Learn More
Simultaneous recordings, in the presence or absence of cadmium, of current and contraction of skeletal muscle cells in primary culture (myoballs) showed that the relative part of contraction depending on calcium current progressively decreases with the age of cells whereas the cadmium-insensitive component becomes predominant. The coexistence of “cardiac”(More)
Resting and transient levels of intracellular free calcium concentrations were recorded in indo-1 loaded neonatal rat ventricular cardiomyocytes in primary culture by means of an interactive laser cytometer. The calcium transients were induced by high potassium and caffeine applications. The resting level of intracellular calcium remained constant (about(More)
Calcium mishandling in Duchenne dystrophic muscle suggested that dystrophin, a membrane-associated cytoskeleton protein, might regulate calcium signaling cascade such as calcium influx pathway. It was previously shown that abnormal calcium entries involve uncontrolled stretch-activated currents and store-operated Ca2+ currents supported by TRPC1 channels.(More)
During in vitro development of rat skeletal muscle cells, contraction and calcium currents progressively appear after fusion of myoblasts. To investigate whether muscle-specific functions are expressed in the absence of myoblast fusion, rat neonatal muscle cells were cultured in a differentiation medium under conditions that are well known to inhibit(More)
SEMA3F, isolated from a 3p21.3 deletion, has antitumor activity in transfected cells, and protein expression correlates with tumor stage and histology. In primary tumors, SEMA3F and VEGF surface staining is inversely correlated. Coupled with SEMA3F at the leading edge of motile cells, we previously suggested that both proteins competitively regulate cell(More)
Defective expression of dystrophin in muscle cells is the primary feature of Duchenne muscular dystrophy (DMD), which is accompanied by fiber necrosis and intracellular calcium mishandling. These features led to the hypothesis that dystrophin could control calcium movements. Calcium mishandling in human DMD myotubes is dependent on contraction and/or(More)
Resting intracellular calcium activity was recorded in three kinds of human muscle cells in culture: normal (control) and dystrophic (DMD and FSH), by means of a ratiometric fluorescence method using the calcium probe Indo-1 under laser illumination. DMD cells are characterized by a lack of dystrophin whereas FSH cells express normal dystrophin. The aim of(More)
In Duchenne muscular dystrophy (DMD) muscle cells which lack dystrophin, contraction seems to be a dominant factor contributing to the abnormal elevated intracellular calcium level. Human normal and DMD contracting myotubes cocultured with nervous cells were exposed to a hypotonic medium to mimic contraction-induced mechanical stress on the membrane, and(More)
We previously showed that alternatively spliced ankyrins-G, the Ank3 gene products, are expressed in skeletal muscle and localize to the postsynaptic folds and to the sarcoplasmic reticulum. Here we report the molecular cloning, tissue expression, and subcellular targeting of Ank(G107), a novel ankyrin-G from rat skeletal muscle. Ank(G107) lacks the entire(More)
Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin and an elevated intracellular calcium level. Single-channel recordings were performed with the cell-attached configuration of the patch-clamp technique. The present study shows, on human co-cultured normal and dystrophic muscle cells, the evidence for an increased activity of(More)