Learn More
Flow-sensor arrays uncover the potential to measure spatio-temporal flow patterns rather than flow measurements at just a single point. We present in this paper the developments in design, fabrication and interfacing of biomimetic flow-sensor arrays, inspired by flow-sensitive organs (cerci) of crickets. For the purpose of high-resolution flow field(More)
The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long appendages at their rear. We studied both types of oscillatory(More)
The Microflown is an acoustic sensor that measures particle velocity instead of pressure, as conventional microphones do. This paper presents an analytical model describing the physical processes that govern the behaviour of the sensor and determine its sensitivity. Forced convection by an acoustic wave causes a small, asymmetrical, perturbation to the(More)
This paper addresses the latest developments in biomimetic hair-flow sensors towards sensitive high-density arrays. Improving the electrodes design of the hair sensor, using Silicon-on-Insulator (SOI) wafer technology, has resulted in the ability to measure small capacitance changes as caused by minute rotations of single-hair sensors. The detection limit,(More)
This paper presents the design, modeling, and fabrication of a planar three-degrees-of-freedom parallel kinematic manipulator, fabricated with a simple two-mask process in conventional highly doped single-crystalline silicon (SCS) wafers 〈100〉. The manipulator’s purpose is to provide accurate and stable positioning of a small sample (10 × 20 × 0.2 μm),(More)
Next to image sensors, future’s robots will definitely use a variety of sensing mechanisms for navigation and prevention of risks to human life, for example flow-sensor arrays for 3D hydrodynamic reconstruction of the near environment. This paper aims to quantify the possibilities of our artificial hair flow-sensor for high-resolution flow field(More)
  • Promotiecommissie Voorzitter, Universiteit P J Gellings, +12 authors Proefschrift Ter
  • 2004
In this chapter a short introduction on the physical phenomena sound and sound intensity is given, and the Microflown and its working principle as a two-wire thermal flow sensor for acoustic measurements are briefly described. Additionally a concise, chapter-by-chapter overview of the complete thesis is presented.
Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third(More)
This paper presents the fabrication of flow-sensors based on the drag-force induced motion of artificial hairs connected to capacitive read-out. Artificial hairs were made either out of moulded silicon-nitride structures or by SU-8. The SU-8 hairs were suspended on membranes containing electrodes to form the variable capacitors. Silicon-rich-nitride hairs(More)
A novel time-saving and cost-effective release technique has been developed and is described. The physical nature of the process is explained in combination with experimental observations. The results of the flash release process are compared with those of freeze-drying and supercritical CO2 releasing. It is demonstrated that the new technique is not only(More)