Learn More
A finite element based micromechanical model has been developed for analyzing and characterizing the microstructural as well as homogenized mechanical response of brain tissue under large deformation. The model takes well-organized soft tissue as a fiber-reinforced composite with nonlinear and anisotropic behavior assumption for the fiber as well as the(More)
A major role for the cerebrospinal fluid (CSF) is to provide effective damping against sudden intracranial brain motions during dynamic head impact. This paper examines the roles of CSF properties on human brain responses under certain impact loadings. The brain is assumed to have a hyperviscoelastic material behaviour, while CSF is considered to be(More)
BACKGROUND Unlike civilian post-traumatic stress disorder (PTSD), the efficacy of sertraline for the treatment of combat-related PTSD has not yet been proven. The present study aimed to evaluate the clinical efficacy of sertraline against combat-related PTSD in a randomized, double-blind, placebo-controlled trial. METHOD Seventy Iranian veterans of the(More)
The results of a computational study of a helmeted human head are presented in this paper. The focus of the work is to study the effects of helmet pad materials on the level of acceleration, inflicted pressure and shear stress in a human brain model subjected to a ballistic impact. Four different closed cell foam materials, made of expanded polystyrene and(More)
In this study, the optimal viscoelastic material parameters of axon and extracellular matrix (ECM) in porcine brain white matter were identified using a genetic algorithm (GA) optimization procedure. The procedure was combined with micromechanical finite element analysis (FEA) of brain tissue and experimental stress relaxation tests on brainstem specimens(More)
This paper proposes a micromechanics algorithm utilising the finite element method (FEM) for the analysis of heterogeneous matter. The characterisation procedure takes the material properties of the constituents, axons and extracellular matrix (ECM) as input data. The material properties of both the axons and the matrix are assumed to have linear(More)
Three different human head models in a free space are exposed to blast waves coming from four different directions. The four head-neck-body models composed of model a, with the neck free in space; model b, with neck fixed at the bottom; and model c, with the neck attached to the body. The results show that the effect of the body can be ignored for the first(More)
In this paper, head-neck boundary conditions and modeling of the head are studied circumspectly. The neck is modeled using discrete elements and the head model is three-dimensional. In the study presented here, a viscoelastic foundation (i.e., foundation defined by both springs and dampers) concept is introduced to simulate the head-neck boundary conditions(More)
  • 1