Learn More
G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta2-adrenergic receptor. Introduction of changes(More)
Isozyme-specific antibodies were raised against peptides from the low-homology regions of the sequences of rat glycogen phosphorylase BB and MM isozymes by immunization of rabbits and guinea pigs. Immunocytochemical double-labelling experiments on frozen sections of rat nervous tissues were performed to investigate the isozyme localization pattern.(More)
CD4+ class II-restricted T cells specific for self antigens are thought to be involved in the pathogenesis of most human autoimmune diseases and molecular mimicry between foreign and self ligands has been implicated as a possible mechanism for their activation. In this report we introduce combinatorial peptide libraries as a powerful tool to identify(More)
Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance mechanism. We describe a novel staphylococcal gene, mprF, which(More)
Macrophages are typically stimulated by components of microbial cell walls. Surprisingly, cell wall-less mycoplasmas can also very efficiently stimulate macrophages. We showed recently that mycoplasma-derived lipopeptides constitute the active principle. We have now isolated a clone of Mycoplasma fermentans expressing mainly one macrophage-stimulating(More)
Müller cells, the radially oriented dominant macroglial cells of the retina, are known to contain abundant glycogen as well as the key enzyme for its degradation, glycogen phosphorylase (GP), but the expressed isozyme pattern is unknown. To elucidate the isoform expression pattern, specific antisera directed against the brain (BB) and muscle (MM) isoforms(More)
The purine nucleotide cycle enzyme AMP deaminase (AMPD) catalyzes the irreversible hydrolytic deamination of AMP. The physiological function of the purine nucleotide cycle in the brain is unknown. In situ hybridization and immunocytochemical studies were performed to identify the regional and cellular expression of AMPD in rat brain with the goal of(More)
Glycogen is an endogenous store of glucose equivalents for energy metabolism in many tissues. The brain contains a significant amount of glycogen the role of which as an energy reserve is currently under debate. Apparently little is known concerning a possible role of glycogen in peripheral nerves. We have demonstrated immunocytochemically the presence of(More)
Class II-associated invariant chain peptides (CLIPs) compete with natural allele-specific ligands for binding to several purified HLA-DR molecules. Truncation and substitution analysis showed that a minimal sequence of 13 amino acids is sufficient for excellent binding to DR17 and DR1. Hydrophobic residues at relative positions 1 and 9 (P1 and P9) which are(More)
MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new(More)