Learn More
The serotonin transporter (SERT) is one of the neurotransmitter transporters that plays a critical role in the regulation of endogenous amine concentrations and therefore is an important target for therapeutic agents affecting the central nervous system. The recently published, high resolution X-ray structure of the closely related amino acid transporter,(More)
We have performed molecular dynamics simulations of a homology model of the human serotonin transporter (hSERT) in a membrane environment and in complex with either the natural substrate 5-HT or the selective serotonin reuptake inhibitor escitalopram. We have also included a transporter homologue, the Aquifex aeolicus leucine transporter (LeuT), in our(More)
It is well established that small sugars exert different types of stabilization of biomembranes both in vivo and in vitro. However, the essential question of whether sugars are bound to or expelled from membrane surfaces, i.e., the sign and size of the free energy of the interaction, remains unresolved, and this prevents a molecular understanding of the(More)
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large(More)
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated(More)
Utilizing structure-based design, we have previously demonstrated that it is possible to obtain selective inhibitors of protein-tyrosine phosphatase 1B (PTP1B). A basic nitrogen was introduced into a general PTP inhibitor to form a salt bridge to Asp48 in PTP1B and simultaneously cause repulsion in PTPs containing an asparagine in the equivalent position(More)
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide(More)
Secretory human phospholipase A2 type IIA (PLA2-IIA) catalyzes the hydrolysis of the sn-2 ester bond in glycerolipids to produce fatty acids and lysolipids. The enzyme is coupled to the inflammatory response, and its specificity toward anionic membrane interfaces suggests a role as a bactericidal agent. PLA2-IIA may also target perturbed native cell(More)
A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein tyrosine phosphatase 1B (PTP1B) are known. To obtain a(More)