Learn More
INTRODUCTION 4 1. OECD Guidelines for the Testing of Chemicals are periodically reviewed in light of 5 scientific progress, changing regulatory needs, and animal welfare considerations. The first 6 Test Guideline (TG) for the determination of skin sensitisation in the mouse, the Local 7 Lymph Node Assay (LLNA; TG 429) was adopted in 2002 (1). The details of(More)
To establish further a practical quantitative in chemico reactivity assay for screening contact allergens, lysine peptide was incorporated into a liquid chromatography and tandem mass spectrometry-based assay for reactivity assessments of hapten and pre-/pro-hapten chemical sensitizers. Loss of peptide was determined following 24 h coincubation with test(More)
Allergic contact dermatitis resulting from skin sensitization is a common occupational and environmental health problem. In recent years, the local lymph node assay (LLNA) has emerged as a practical option for assessing the skin sensitization potential of chemicals. In addition to accurate identification of skin sensitizers, the LLNA can also provide a(More)
There is an urgent need to develop data integration and testing strategy frameworks allowing interpretation of results from animal alternative test batteries. To this end, we developed a Bayesian Network Integrated Testing Strategy (BN ITS) with the goal to estimate skin sensitization hazard as a test case of previously developed concepts (Jaworska et al.,(More)
The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound(More)
Three and four state categorical quantitative structure-activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (Li et al., 2007, Chem. Res. Toxicol. 20, 114-128).(More)
Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the local lymph node assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, for eaxample, quantitative structure-activity relationship (QSAR) models. Here, QSAR models for(More)
The identification of potential skin sensitizing chemicals is a key step in the overall skin safety risk assessment process. Traditionally, predictive testing has been conducted in guinea pigs. More recently, the murine local lymph node assay (LLNA) has become the preferred test method for assessing skin sensitization potential. However, even with the(More)
The presence of mycotoxins in grains is well documented. Workers in grain handling occupations are commonly exposed to grain dust aerosols. Work in our laboratory has shown that T-2 toxin is highly toxic to rat alveolar macrophages in vitro, causing loss of viability, release of radiolabeled chromium, inhibition of macromolecular synthesis, inhibition of(More)
Alveolar macrophages (AM) from pathogen-free rabbits were unable to release reactive oxygen intermediates (ROI) unless they were conditioned in serum for 24-48 h before triggering with membrane-active agents. The degree of serum conditioning of AM depended upon the concentration of serum used; optimal ROI release was obtained at or above 7.5% fetal bovine(More)