Learn More
This paper describes the implementation of a novel technique called Background Oriented Schlieren that can produce quantitative visualization of density in a flow. This technique uses only a digital still camera, a structured background, and inverse tomographic algorithms which can extract two-dimensional slices from a three-dimensional flow. This has been(More)
A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4(')-methoxy-5(')methyl-phenyl)-cyclohexane (BMMPC). These long-range density(More)
Translational tracer diffusion of spherical macromolecules in crowded suspensions of rodlike colloids is investigated. Experiments are done using several kinds of spherical tracers in fd-virus suspensions. A wide range of size ratios L/2a of the length L of the rods and the diameter 2a of the tracer sphere is covered by combining several experimental(More)
In this joint experimental-theoretical work we study hydrodynamic interaction effects in dense suspensions of charged colloidal spheres. Using x-ray photon correlation spectroscopy we have determined the hydrodynamic function H(q), for a varying range of electrosteric repulsion. We show that H(q) can be quantitatively described by means of a novel Stokesian(More)
We report on a high pressure cell to use with small angle neutron scattering (SANS) in a pressure range up to 500 MPa. The cell offers the new possibility to investigate liquid samples by a specially designed sample chamber, which allows changing of samples relatively easily. Since the cell construction uses sapphire as window material, also light(More)
Star polymers with a high number of arms, f=263, become kinetically trapped when dispersed in an athermal solvent at concentrations above the overlapping one, forming physical gels. We show that the addition of linear chains at different concentrations and molecular weights reduces the modulus of the gel, eventually melting it. We explain this linear(More)
We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS), and dynamic light scattering (DLS) to investigate the phase diagram of a sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed in toluene. This system is known to exhibit gas-liquid phase separation and percolation, depending(More)
Slowly diffusing water molecules were found by quasi-elastic neutron scattering (QENS) in a sodium dodecyl sulfate (SDS) micellar solution, and both their diffusion coefficient (4.33 x 10(-6) cm2 x s(-1)) and mole fraction (0.057) were determined. After successfully checking the mean slowing down of solvent molecules by the gradient compensated stimulated(More)
Tissue engineering (TE) of cartilage for reconstructive surgery has proven to be a promising option for obtaining tissue for 3D structures that results in minimal donor site morbidity. Technological advances in this area are important since many defects can only be treated with customized implants. Most TE strategies rely on the use of resorbable 3D(More)
We present an experimental study of short-time diffusion properties in fluidlike suspensions of monodisperse charge-stabilized silica spheres suspended in dimethylformamide. The static structure factor S(q), the short-time diffusion function D(q), and the hydrodynamic function H(q) have been probed by combining x-ray photon correlation spectroscopy(More)