Learn More
Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces(More)
The cyclin-dependent kinase (CDK)-activating kinase, CAK, from mammals and amphibians consists of MO15/CDK7 and cyclin H, a complex which has been identified also as a RNA polymerase II C-terminal domain (CTD) kinase. While the Schizosaccharomyces pombe cdc2 gene product also requires an activating phosphorylation, the enzyme responsible has not been(More)
Activating phosphorylation of cyclin-dependent kinases (Cdks) is mediated by at least two structurally distinct types of Cdk-activating kinases (Caks): the trimeric Cdk7-cyclin H-Mat1 complex in metazoans and the single-subunit Cak1 in budding yeast. Fission yeast has both Cak types: Mcs6 is a Cdk7 ortholog and Csk1 a single-subunit kinase. Both(More)
The chorismate mutase structural gene, ARO7, which is necessary for both phenylalanine and tyrosine biosynthesis was cloned by complementation in yeast. Genetic analysis showed that ARO7 was identical to a gene necessary for growth in hypertonic medium, OSM2, which mapped nearby. After restriction mapping and subcloning of the plasmid, the cloned gene was(More)
The Schizosaccharomyces pombe cdc2-3w wee1-50 double mutant displays a temperature-sensitive lethal phenotype termed mitotic catastrophe. Six mitotic catastrophe suppressor (mcs1-6) genes were identified in a genetic screen designed to identify regulators of cdc2. Mutations in mcs1-6 suppress the cdc2-3w wee1-50 temperature-sensitive growth defect. Here,(More)
cDNA homologues of the Saccharomyces cerevisiae UBC4 and UBC5 genes, encoding putative ubiquitin conjugating enzymes, were isolated and characterized from the fission yeast Schizosaccharomyces pombe and from the pathogenic dimorphic yeast Candida albicans. The Sz. pombe and C. albicans deduced amino-acid sequences are 82.3 and 90.5% similar to the Sa.(More)
Major transitions in the eukaryotic cell cycle are regulated by the cyclin-dependent protein kinases (CDK). In particular, the G2/M transition is initiated by the activity of a complex formed by a CDK of the Cdc2/Cdc28 family and B-type cyclins of the Cdc13/C1b family in the yeasts, Schizosaccharomyces pombe (Sp) and Saccharomyces cerevisiae (Sc). To study(More)
  • 1