G. Constantin

Learn More
In degenerative disorders of the central nervous system (CNS), transplantation of neural multipotent (stem) precursor cells (NPCs) is aimed at replacing damaged neural cells. Here we show that in CNS inflammation, NPCs are able to promote neuroprotection by maintaining undifferentiated features and exerting unexpected immune-like functions. In a mouse model(More)
Chemokines trigger rapid integrin-dependent lymphocyte arrest to vascular endothelium. We show that the chemokines SLC, ELC, and SDF-1alpha rapidly induce lateral mobility and transient increase of affinity of the beta2 integrin LFA-1. Inhibition of phosphatidylinositol 3-OH kinase (PI(3)K) activity blocks mobility but not affinity changes and prevents(More)
Classical chemoattractants and chemokines trigger integrin-dependent adhesion of blood leukocytes to vascular endothelium and also direct subsequent extravasation and migration into tissues. In studies of human polymorphonuclear neutrophil responses to formyl peptides and to interleukin 8, we show evidence of involvement of the atypical zeta protein kinase(More)
Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for neurological autoimmune diseases; previous studies have shown that treatment with bone marrow-derived MSCs induces immune modulation and reduces disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Here we show that intravenous(More)
Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studies of gene function. However, efficient VIGS has only been accomplished in a few plant species. In order to extend the application of VIGS, we examined whether a VIGS vector based on Pea early browning virus (PEBV) would produce recognizable phenotypes in Pisum sativum. A(More)
Mesenchymal stem cells (MSCs) represent a promising therapeutic approach in nerve tissue engineering. To date, the local implantation of MSC in injured nerves has been the only route of administration used. In case of multiple sites of injury, the systemic administration of cells capable of reaching damaged nerves would be advisable. In this regard, we(More)
Epilepsy has been considered mainly a neuronal disease, without much attention to non-neuronal cells. In recent years growing evidence suggest that astrocytes, microglia, blood leukocytes and blood-brain barrier breakdown are involved in the pathogenesis of epilepsy. In particular, leukocyte-endothelium interactions and eventually subsequent leukocyte(More)
Leukocyte trafficking from the blood into the tissues represents a key process during inflammation and requires multiple steps mediated by adhesion molecules and chemoattractants. Inflammation has a detrimental role in several diseases, and in such cases, the molecular mechanisms controlling leukocyte migration are potential therapeutic targets. Over the(More)
Treatment strategies for Alzheimer's disease (AD) are still elusive. Thus, new strategies are needed to understand the pathogenesis of AD in order to provide suitable therapeutic measures. Available evidences suggest that in AD, passage across the blood-brain barrier (BBB) and transport exchanges for amyloid-β-peptide (ABP) between blood and the central(More)
In this study we have examined the effects of interleukin 10 (IL-10) on polymorphonuclear leukocytes (PMN), and found that it is a potent inhibitor of tumor necrosis factor (TNF), IL-1 beta, and IL-8 secretion triggered by lipopolysaccharide (LPS). Cytokine production by phagocytosing PMN was also inhibited by IL-10, but to a lesser extent than the(More)