Learn More
We report on the design and development of X-RHex, a hexapedal robot with a single actuator per leg, intended for real-world mobile applications. X-RHex is an updated version of the RHex platform, designed to offer substantial improvements in power, run-time, payload size, durability, and terrain negotiation, with a smaller physical volume and a comparable(More)
This paper presents an integrated, systems-level view of several novel design and control features associated with the biologically inspired, hexapedal, RiSE (Robots in Scansorial Environments) robot. RiSE is the first legged machine capable of locomotion on both the ground and a variety of vertical building surfaces including brick, stucco, and crushed(More)
This paper introduces the concept of gait transitions, acyclic feedforward motion patterns that allow a robot to switch from one gait to another. Legged robots often utilize collections of gait patterns to locomote over a variety of surfaces. Each feedforward gait is generally tuned for a specific surface and set of operating conditions. To enable(More)
For mobile robots, the essential units of actuation, computation, and sensing must be designed to fit within the body of the robot. Additional capabilities will largely depend upon a given activity, and should be easily reconfigurable to maximize the diversity of applications and experiments. To address this issue, we introduce a modular architecture(More)
This paper documents near-autonomous negotiation of synthetic and natural climbing terrain by a rugged legged robot, achieved through sequential composition of appropriate perceptually triggered locomotion primitives. The first, simple composition achieves autonomous uphill climbs in unstructured outdoor terrain while avoiding surrounding obstacles such as(More)
— This paper proposes a novel method of applying feedback control for legged robots, by directly modifying parameters of a robot's gait pattern. Gaits are a popular means of producing stable locomotion for legged robots, through the use of cyclic feedforward motion patterns, while requiring little to no sensory information. We are interested in(More)
We have developed the CHIMP (CMU Highly Intelligent Mobile Platform) robot as a platform for executing complex tasks in dangerous, degraded, human-engineered environments. CHIMP has a near-human form factor, work-envelope, strength, and dexterity to work effectively in these environments. It avoids the need for complex control by maintaining static rather(More)
This paper describes the development of a legged robot designed for general locomotion of complex terrain but specialized for dynamical, high-speed climbing of a uniformly convex cylindrical structure, such as an outdoor telephone pole. This robot, the RiSE V3 climbing machine—mass 5.4 kg, length 70 cm, excluding a 28 cm tail(More)
We present a framework for detecting, identifying, and recovering within stride from faults and other leg contact disturbances encountered by a walking hexapedal robot. Detection is achieved by means of a software contact-event sensor with no additional sensing hardware beyond the commercial actuators' standard shaft encoders. A simple finite state machine(More)