Learn More
Diets rich in fat result in higher concentrations of secondary bile acids or their salts in the colon, which may adversely affect cells of the colonic epithelium. Because secondary bile acids are thought to be genotoxic, exposing colon epithelial cells to secondary bile acids may induce DNA damage that might lead to apoptosis. The requirement for the p53(More)
  • George Loo
  • 2003
Phytochemicals are potential cancer chemopreventive agents, based partly on cellular research establishing that phytochemicals inhibit the proliferation of cancer cells. To elucidate the mechanism of phytochemicals, a basic understanding is needed of what stimulates cancer cell proliferation. Cancer cells, particularly those that are highly invasive or(More)
Ingestion of plant products containing the phenolic phytochemical, curcumin, has been linked to lower incidences of colon cancer, suggesting that curcumin has cancer chemopreventive effects. Supporting this suggestion at the cellular level, apoptosis occurs in human colon cancer cells exposed to curcumin. However, the mechanism is unclear, prompting this(More)
Phenolic phytochemicals are thought to promote optimal health, partly via their antioxidant effects in protecting cellular components against free radicals. The aims of this study were to assess the free radical-scavenging activities of several common phenolic phytochemicals, and then, the effects of the most potent phenolic phytochemicals on oxidative(More)
Phenolic phytochemicals are natural plant substances whose cellular effects have not been completely determined. Nordihydroguaiaretic acid (NDGA) and curcumin are two phenolic phytochemicals with similar molecular structures, suggesting that they possess comparable chemical properties particularly in terms of antioxidant activity. To examine this(More)
Depriving cells of iron likely stresses them and can result in cell death. To examine the potential relationship between this form of stress and cell death, Jurkat T-lymphocytes were made iron-deficient by exposing them to the iron chelator, deferoxamine (DFO). Such treatment produced evidence of apoptosis, including cell shrinkage, membrane blebbing,(More)
The colonic epithelium is often exposed to high concentrations of secondary bile acids, which stresses the epithelial cells, leading potentially to activation of stress-response genes. To examine this possibility in vitro, the purpose of this study was to determine if expression of certain growth arrest and DNA damage-inducible genes (GADD) is upregulated(More)
The micronutrient copper is a catalytic cofactor for copper, zinc superoxide dismutase and ceruloplasmin, which are two important antioxidant enzymes. As such, a lack of copper may promote oxidative stress and damage. The purpose of this study was to determine the effect of copper deficiency on oxidative damage to DNA in Jurkat T-lymphocytes. To induce(More)
Highly differentiated human cell lines represent a useful in vitro model for the study of carotenoid uptake, metabolism, and function. Carotenoids are usually introduced into tissue culture media either in organic solvents or as micelles, whereas carotenoids are localized in lipoproteins in vivo. Initially, the stability of beta-carotene and(More)
Tocotrienols, which are Vitamin E isoforms, are known to inhibit the growth of human breast cancer cells due partly to apoptosis. However, the characterization of tocotrienol-induced apoptosis is incomplete, particularly what happens during the initiation phase that precedes execution of the cells. The objective of this study was to clarify the apoptotic(More)