Learn More
Clathrin-mediated endocytosis involves cycles of assembly and disassembly of clathrin coat components and their accessory proteins. Dephosphorylation of rat brain extract was shown to promote the assembly of dynamin 1, synaptojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. Phosphorylation of dynamin 1 and synaptojanin 1(More)
Amphiphysin 1 is a phosphoprotein expressed at high levels in neurons, where it participates in synaptic vesicle endocytosis and neurite outgrowth. It is a substrate for cyclin-dependent kinase (cdk) 5, a member of the cyclin-dependent protein kinase family, which has been functionally linked to neuronal migration and neurite outgrowth via its action on the(More)
Amphiphysin I is an SH3 domain-containing neuronal protein, enriched in axon terminals, which was reported to act as a physiological binding partner for dynamin I in synaptic vesicle endocytosis. Rvs167 and Rvs161, the yeast homologs of amphiphysin I, have been implicated in endocytosis, actin function, and cell polarity. Now we have explored the(More)
Amphiphysin 1 and 2 are proteins implicated in the recycling of synaptic vesicles in nerve terminals. They interact with dynamin and synaptojanin via their COOH-terminal SH3 domain, whereas their central regions contain binding sites for clathrin and for the clathrin adaptor AP-2. We have defined here amino acids of amphiphysin 1 crucial for binding to AP-2(More)
  • 1