G Bulgarelli-Leva

Learn More
Wortmannin at nanomolar concentrations is a potent and specific inhibitor of phosphoinositide (PI) 3-kinase and has been used extensively to demonstrate the role of this enzyme in diverse signal transduction processes. At higher concentrations, wortmannin inhibits the ataxia telangiectasia gene (ATM)-related DNA-dependent protein kinase (DNA-PKcs). We(More)
Phosphoinositide 3-kinases (PI3Ks) activate protein kinase PKB (also termed Akt), and PI3Kgamma activated by heterotrimeric guanosine triphosphate-binding protein can stimulate mitogen-activated protein kinase (MAPK). Exchange of a putative lipid substrate-binding site generated PI3Kgamma proteins with altered or aborted lipid but retained protein kinase(More)
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K(More)
Phosphoinositide 3-kinase gamma is preferentially expressed in leukocytes. PI3Kgamma is activated by betagamma subunits of heterotrimeric G-proteins, which thus link seven transmembrane helix receptor activation to phosphatidylinositol (3,4,5)-trisphosphate production. Here we describe the molecular cloning of the murine PI3Kgamma cDNA, the PI3Kgamma gene(More)
Signalling via seven transmembrane helix receptors can lead to a massive increase in cellular PtdIns(3,4,5)P3, which is critical for the induction of various cell responses and is likely to be produced by a trimeric G-protein-sensitive phosphoinositide 3-kinase (PI3Kgamma). We show here that PI3Kgamma is a bifunctional lipid kinase and protein kinase, and(More)
  • 1