Learn More
Yeast cells arrest in the G1 phase of the cell cycle upon exposure to mating pheromones. As cells commit to a new cycle, G1 CDK activity (Cln/CDK) inhibits signaling through the mating MAPK cascade. Here we show that the target of this inhibition is Ste5, the MAPK cascade scaffold protein. Cln/CDK disrupts Ste5 membrane localization by phosphorylating a(More)
The proteolytic machinery of chloroplasts and mitochondria in Arabidopsis consists primarily of three families of ATP-dependent proteases, Clp, Lon, and FtsH, and one family of ATP-independent proteases, DegP. However, the functional significance of the multiplicity of their genes is not clear. To test whether expression of specific isomers could be(More)
The SAM domain of the Saccharomyces cerevisiae post-transcriptional regulator Vts1p epitomizes a subfamily of SAM domains conserved from yeast to humans that function as sequence-specific RNA-binding domains. Here we report the 2.0-Å X-ray structure of the Vts1p SAM domain bound to a high-affinity RNA ligand. Specificity of RNA binding arises from the(More)
Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. The phytohormone abscisic acid (ABA) is a key endogenous messenger in a plant’s response to such stresses. A novel ABA binding mechanism which plays a key role in plant cell signaling cascades has recently been uncovered. In(More)
Cell growth is an essential requirement for cell cycle progression. While it is often held that growth is independent of cell cycle position, this relationship has not been closely scrutinized. Here we show that in budding yeast, the ability of cells to grow changes during the cell cycle. We find that cell growth is faster in cells arrested in anaphase and(More)
The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade(More)
Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation(More)
The olive (Olea europaea L.) was domesticated in the Mediterranean area over 6000 years ago and is currently one of the area’s most important oleaginous crops. Due to its economic, cultural and ecological importance, breeding programs aimed at obtaining new olive cultivars have been developed in most olive-producing countries. An efficient breeding program(More)
The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant’s response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA(More)
Yeast sulfur metabolism is transcriptionally regulated by the activator Met4. Met4 lacks DNA-binding ability and relies on interactions with Met31 and Met32, paralogous proteins that bind the same cis-regulatory element, to activate its targets. Although Met31 and Met32 are redundant for growth in the absence of methionine, studies indicate that Met32 has a(More)