Learn More
Recent reports challenge the hypothesis that expression of calcium binding proteins contributes to the greater resistance of some motoneurons to degeneration in amyotrophic lateral sclerosis (ALS). We therefore re-examined, using immunohistochemistry, the expression of calbindin, calretinin and parvalbumin in vulnerable (hypoglossal, XII; and cervical(More)
1. Motoneurons (MN) shape motor patterns by transforming inputs into action potential output. This transformation, excitability, is determined by an interaction between synaptic inputs and intrinsic membrane properties. Excitability is not static, but changes over multiple time scales. The purpose of the present paper is to review our recent data on(More)
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder that results in selective degeneration of most, but not all, groups of motoneurons. The greater susceptibility of vulnerable motoneurons to glutamate excitotoxicity and neurodegeneration has been hypothesized to result from their lower expression of the GluR2 AMPA receptor subunit under(More)
The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterised by loss of motoneurons of the brainstem and spinal cord, and corticospinal neurons of the motor cortex. There is also increasing evidence of involvement of glial cells and interneurons, with non-cell autonomous disease mechanisms now thought to contribute to motoneuron(More)
Glutamate excitotoxicity has been suggested to play a role in amyotrophic lateral sclerosis, since overstimulation of post-synaptic glutamate receptors by accumulated extracellular glutamate leads to motoneuron cell death. It is however unclear as to why some groups of motoneurons degenerate in this disease while other groups remain relatively intact even(More)
  • 1