Learn More
We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms(More)
Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes(More)
Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge(More)
Predicting the localization of a protein has become a useful practice for inferring its function. Most of the reported methods to predict subcellular localizations in Gram-negative bacterial proteins make use of standard protein representations that generally do not take into account the distribution of the amino acids and the structural information of the(More)
Predicting the localization of a protein has become a useful practice for inferring its function. Most of the reported methods to predict subcellular localizations in Gram-negative bacterial proteins have shown a low false positive rate. However, some subcellular compartmens like "periplasm" and "extracellular medium" are difficult to predict and remain(More)
Estimating the function of unknown proteins is one of the main goals in bioinformatics. In the last few years, many pattern recognition algorithms have been developed, usually focusing on global information of the protein. Conversely, predictions can be done through the identification of functional sub-sequence patterns or motifs, but most methods for(More)
Predict the function of unknown proteins is one of the principal goals in computational biology. The subcellular localization of a protein allows further understanding its structure and molecular function. Numerous prediction techniques have been developed, usually focusing on global information of the protein. But, predictions can be done through the(More)
  • 1