G. A. Sanadze

Learn More
Biogenic isoprene was discovered in the mid-1950s as a component of volatile substances emitted from leaves. In plant species emitting isoprene under illumination, this process is closely related to photosynthesis. Thus, a photobiological phenomenon termed “isoprene effect” or isoprene emission (IE) was discovered. Subsequent studies showed that leaves are(More)
Various aspects in photobiosynthesis of isoprene and its release from leaves into the environment are presently well known. The release of isoprene from the cell can be regarded as dissipation of excess energy (entropy). The systemic release of metabolites into the external medium should be considered as a result of cell excretory activity, one of the most(More)
The protein converting dimethylallylpyrophosphate (DMAPP) into isoprene in vitrowas isolated and purified 3000-fold from leaves of berry-bearing poplar (Populus deltoidesMarsh.). As the enzyme was purified, its specific activity increased and at the final stage reached 266 nmol/(min mg protein). The enzyme was eluted by anion-exchange chromatography in a(More)
In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of(More)
Energy dynamics of isoprene biosynthesis and the mechanism of isoprene emission are discussed in view of their fundamental role in dissipativity of living cells. The significance of basic principles of colloidal chemistry for biological energy conversion is emphasized. The idea is put forward of the existence in living cells of the universal energy-dynamic(More)
  • 1