Learn More
BACKGROUND Experimental and theoretical studies of protein folding suggest that the free-energy change associated with the folding process is a primary factor in determining folding rates. We have recently developed a photochemical electron-transfer-triggering method to study protein-folding kinetics over a wide range of folding free energies. Here, we have(More)
Photochemical techniques have been used to measure the kinetics of intramolecular electron transfer in Ru(bpy)2(im)(His)2(+)-modified (bpy = 2,2'-bipyridine; im = imidazole) cytochrome c and azurin. A driving-force study with the His33 derivatives of cytochrome c indicates that the reorganization energy (lambda) for Fe2+-->Ru3+ ET reactions is 0.8 eV.(More)
  • 1