Learn More
Cyclic ADP-ribose (cADPR) is a natural compound that mobilizes calcium ions in several eukaryotic cells. Although it can lead to the release of calcium ions in T lymphocytes, it has not been firmly established as a second messenger in these cells. Here, using high-performance liquid chromatography analysis, we show that stimulation of the T-cell(More)
Ca2+ release from intracellular stores is one of the major events transducing extracellular signals into living cells. Recently, a metabolite of nicotinamide adenine dinucleotide+ (NAD+), termed "cyclic adenosine diphosphate-ribose" (cADPr), has been described to release Ca2+ from caffeine-sensitive internal stores of cells. Jurkat T cells possess(More)
Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of(More)
Cyclic adenosine diphosphate ribose (cADPR) is a naturally occurring and potent Ca2+-mobilizing agent. Structural analogues are currently required as pharmacological tools for the investigation of this topical molecule, but modifications to date have concentrated primarily upon the purine ring. Two novel dehydroxylated analogues of cADPR have now been(More)
cADP-ribose (cADPr) has recently been shown to release Ca2+ from an intracellular store of permeabilized T lymphocyte cell lines (Guse, A. H., da Silva, C. P., Emmrich, F., Ashamu, G. A., Potter, B. V. L., and Mayr, G. W. (1995) J. Immunol. 155, 3353-3359). Using permeabilized Jurkat and HPB. ALL T lymphocytes, the effects of varying concentrations of(More)
1-(5-Phospho-beta-D-ribosyl)2'-phosphoadenosine 5'-phosphate cyclic anhydride [2'-phospho-cyclic ADP-ribose, cAdo(2')P(5')PP-Rib] was prepared enzymatically from NADP+ using ADP-ribosyl-cyclase from Aplysia californica. The product was purified by HPLC and characterized by NMR and mass spectroscopy, by conversion to 1-(5-phospho-beta-D-ribosyl)adenosine(More)
  • 1