Learn More
Certain types of cellular differentiation are probabilistic and transient. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes(More)
Gene regulatory circuits with different architectures (patterns of regulatory interactions) can generate similar dynamics. This raises the question of why a particular circuit architecture is selected to implement a given cellular process. To investigate this problem, we compared the Bacillus subtilis circuit that regulates differentiation into the(More)
Genetic circuits that regulate distinct cellular processes can differ in their wiring pattern of interactions (architecture) and susceptibility to stochastic fluctuations (noise). Whether the link between circuit architecture and noise is of biological importance remains, however, poorly understood. To investigate this problem, we performed a computational(More)
Multipotent differentiation, where cells adopt one of several possible fates, occurs in diverse systems ranging from bacteria to mammals. This decision-making process is driven by multiple differentiation programs that operate simultaneously in the cell. How these programs interact to govern cell fate choice is poorly understood. To investigate this issue,(More)
Stochastic fluctuations affect the dynamics of biological systems. Typically, such noise causes perturbations that can permit genetic circuits to escape stable states, triggering, for example, phenotypic switching. In contrast, studies have shown that noise can surprisingly also generate new states, which exist solely in the presence of fluctuations. In(More)
Cells must make reliable decisions under fluctuating extracellular conditions, but also be flexible enough to adapt to such changes. How cells reconcile these seemingly contradictory requirements through the dynamics of cellular decision-making is poorly understood. To study this issue we quantitatively measured gene expression and protein localization in(More)
The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signalling; however, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These(More)
  • Jintao Liu, Arthur Prindle, Jacqueline Humphries, Marçal Gabalda-Sagarra, Munehiro Asally, Dong-yeon D Lee +3 others
  • 2015
Cells that reside within a community can cooperate and also compete with each other for resources. It remains unclear how these opposing interactions are resolved at the population level. Here we investigate such an internal conflict within a microbial (Bacillus subtilis) biofilm community: cells in the biofilm periphery not only protect interior cells from(More)