Learn More
Neural associative networks with plastic synapses have been proposed as computational models of brain functions and also for applications such as pattern recognition and information retrieval. To guide biological models and optimize technical applications, several definitions of memory capacity have been used to measure the efficiency of associative memory.(More)
In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training(More)
Donald Hebb’s concept of cell assemblies is a physiology-based idea for a distributed neural representation of behaviorally relevant objects, concepts, or constellations. In the late 70s Valentino Braitenberg started the endeavor to spell out the hypothesis that the cerebral cortex is the structure where cell assemblies are formed, maintained and used, in(More)
The Willshaw model is asymptotically the most efficient neural associative memory (NAM), but its finite version is hampered by high retrieval errors. Iterative retrieval has been proposed in a large number of different models to improve performance in auto-association tasks. In this paper, bidirectional retrieval for the hetero-associative memory task is(More)
We propose a formal framework for the description of interactions among groups of neurons. This framework is not restricted to the common case of pair interactions, but also incorporates higher-order interactions, which cannot be reduced to lower-order ones. We derive quantitative measures to detect the presence of such interactions in experimental data, by(More)
To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas using spiking neurons. Area P corresponds to the orientation-selective subsystem of the primary visual cortex, while the central visual area C is modeled as associative memory representing stimulus objects according to Hebbian learning.(More)
The goal of this work is to introduce an architecture to automatically detect the amount of stress in the speech signal close to real time. For this an experimental setup to record speech rich in vocabulary and containing different stress levels is presented. Additionally, an experiment explaining the labeling process with a thorough analysis of the labeled(More)