Learn More
We have studied the role the canonical Wnt pathway plays in hydroid pattern formation during embryonic development and metamorphosis. Transcripts of Wnt and Tcf were asymmetrically deposited in the oocyte and subsequent developmental stages, marking the sites of first cleavage, posterior larval pole and the upcoming head of the metamorphosed polyp. To(More)
Wnt/Frizzled/ss-catenin-based signaling systems play diverse roles in metazoan development, being involved not only in the establishment of body axes in embryogenesis but also in regulating stem cell fate in mammalian post-embryonic development. We have studied the role the canonical Wnt cascade plays in stem cell fate determination in Hydractinia, a member(More)
S-phase cells in intact animals of the coelenterate species Eirene viridula, Hydractinia echinata, Hydra attenuata, and Hydra magnipapillata incorporate the thymidine analogue bromodeoxyuridine (BrdU) into newly synthesized DNA. BrdU-labelled nuclei divide and cells appear to undergo normal differentiation. Whole-mount preparations and macerated tissues(More)
The evolutionary origin of stem cell pluripotency is an unresolved question. In mammals, pluripotency is limited to early embryos and is induced and maintained by a small number of key transcription factors, of which the POU domain protein Oct4 is considered central. Clonal invertebrates, by contrast, possess pluripotent stem cells throughout their life,(More)
We studied the role of Wnt signaling in axis formation during metamorphosis and regeneration in the cnidarian Hydractinia. Activation of Wnt downstream events during metamorphosis resulted in a complete oralization of the animals and repression of aboral structures (i.e. stolons). The expression of Wnt3, Tcf and Brachyury was upregulated and became(More)
With the rapid increase of the quantity of molecular data, many animals joined the ranks of the so-called 'emerging models' of Evo-Devo. One of the necessary steps in converting an emerging model into an established one is gaining comprehensive knowledge of its normal embryonic development. The marine colonial hydrozoan Hydractinia echinata - an excellent(More)
Metamorphosin A (MMA) isolated from the anthozoan Anthopleura elegantissima has recently been shown to interfere with developmental control in the colonial hydroid Hydractinia echinata. In order to identify the functional homologue in this species we have cloned cDNAs of the precursor protein from Hydractinia and, for comparison, precursor sequences from(More)
 In order to facilitate in situ detection of biomolecules in large sample series the processing of whole-mount specimens has been automated. A freely programmable liquid handling system is described by which embryos or similar biological materials are processed. Possible applications include in situ hybridization (ISH), immunocytochemistry (ICC) or reporter(More)
In Hydractinia, a colonial marine hydroid representing the basal phylum Cnidaria, Wnt signaling plays a major role in the specification of the primary body axis in embryogenesis and in the establishment of the oral pole during metamorphosis. Here we report supplementing investigations on head regeneration and bud formation in post-metamorphic development.(More)
The early embryonic development of Hydractinia lasts about 2.5 days until the developing planula larva acquires competence for metamorphosis. Most embryonic cells stop cycling on reaching the larval stage. In older larvae of Hydractinia, cells that are still proliferating occur exclusively in the endoderm in a typical distribution along the longitudinal(More)