Géza Ódor

Learn More
Quenched disorder is known to play a relevant role in dynamical processes and phase transitions. Its effects on the dynamics of complex networks have hardly been studied. Aimed at filling this gap, we analyze the contact process, i.e., the simplest propagation model, with quenched disorder on complex networks. We find Griffiths phases and other rare-region(More)
  • Géza Ódor
  • 2013
I extend a previous work to susceptible-infected-susceptible (SIS) models on weighted Barabási-Albert scale-free networks. Numerical evidence is provided that phases with slow, power-law dynamics emerge as the consequence of quenched disorder and tree topologies studied previously with the contact process. I compare simulation results with spectral analysis(More)
  • Géza Odor
  • 2013
The susceptible-infected-susceptible (SIS) model is one of the simplest memoryless systems for describing information or epidemic spreading phenomena with competing creation and spontaneous annihilation reactions. The effect of quenched disorder on the dynamical behavior has recently been compared to quenched mean-field (QMF) approximations in scale-free(More)
We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [ Front. in Neuroinform., 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be(More)
The critical properties of a simple prey-predator model are revisited. For some values of the control parameters, the model exhibits a line of directed percolationlike transitions to a single absorbing state. For other values of the control parameters one finds a second line of continuous transitions toward an infinite number of absorbing states, and the(More)
A family of nonequilibrium kinetic Ising models, introduced earlier, evolving under the competing effect of spin flips at zero temperature and nearest neighbour random spin exchanges is further investigated here. By increasing the range of spin exchanges and/or their strength the nature of the phase transition 'Ising-to-active' becomes of (dynamic)(More)
We show that generic, slow dynamics can occur in the contact process on complex networks with a tree-like structure and a superimposed weight pattern, in the absence of additional (nontopological) sources of quenched disorder. The slow dynamics is induced by rare-region effects occurring on correlated subspaces of vertices connected by large weight edges(More)
A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by Müller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered(More)
We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff)(More)