Learn More
In earlier research, we identified a 43-kDa c-ErbAalpha1 protein (p43) in the mitochondrial matrix of rat liver. In the present work, binding experiments indicate that p43 displays an affinity for triiodothyronine (T3) similar to that of the T3 nuclear receptor. Using in organello import experiments, we found that p43 is targeted to the organelle by an(More)
Muscle growth results from a set of complex processes including myogenic transcription factor's expression and activity, cell cycle withdrawal, myoblast fusion in myotubes, and acquisition of an apoptosis-resistant phenotype. Myostatin, a member of the TGFbeta family, described as a strong regulator of myogenesis in vivo Nature 387 (1997), 83; FEBS Lett.(More)
Triiodothyronine (T3) is considered a major regulator of mitochondrial activity. In this review, we show evidence of the existence of a direct T3 mitochondrial pathway, and try to clarify the respective importance of the nuclear and mitochondrial pathways for organelle activity. Numerous studies have reported short-term and delayed T3 stimulation of(More)
The importance of mitochondrial activity has recently been extended to the regulation of developmental processes. Numerous pathologies associated with organelle's dysfunctions emphasize their physiological importance. However, regulation of mitochondrial genome transcription, a key element for organelle's function, remains poorly understood. After(More)
Myostatin, which was cloned in 1997, is a potent inhibitor of skeletal muscle growth and member of the tumour growth factor-beta family. Disruption of the myostatin gene in mice induces a dramatic increase in muscle mass, caused by a combination of hypertrophy and hyperplasia. Natural mutations occurring in cattle were also associated with a significant(More)
Since its identification in 1997, myostatin has been considered as a novel and unique negative regulator of muscle growth, as mstn-/- mice display a dramatic and widespread increase in skeletal muscle mass. Myostatin also appears to be involved in muscle homeostasis in adults as its expression is regulated during muscle atrophy. Moreover, deletion of the(More)
The product of the B-cell translocation gene 1 (BTG1), a member of an antiproliferative protein family including Tis-21/PC3 and Tob, is thought to play an important role in the regulation of cell cycle progression. We have shown in a previous work that triiodothyronine (T3) stimulates quail myoblast differentiation, partly through a cAMP-dependent mechanism(More)
To characterize the regulatory pathways involved in the inhibition of cell differentiation induced by the impairment of mitochondrial activity, we investigated the relationships occurring between organelle activity and myogenesis using an avian myoblast cell line (QM7). The inhibition of mitochondrial translation by chloramphenicol led to a potent block of(More)
The btg1 (B-cell translocation gene 1) gene coding sequence was isolated from a translocation break point in a case of B-cell chronic lymphocytic leukaemia. We have already shown that BTG1, considered as an antiproliferative protein, strongly stimulates myoblast differentiation. However, the mechanisms involved in this influence remained unknown. In(More)
Mitochondrial and NADPH oxidase systems and oxidative stress were investigated in 12 week high-fat high-sucrose (HFHS) diet-fed rats. A protective effect of wine polyphenol (PP) extract was also examined. In liver, maximal activities of CII and CII+III mitochondrial complexes were decreased but NADPH oxidase expression (p22(phox) and p47(phox)) and NADPH(More)