Learn More
Axons in the cerebral cortex receive synaptic input at the axon initial segment almost exclusively from gamma-aminobutyric acid-releasing (GABAergic) axo-axonic cells (AACs). The axon has the lowest threshold for action potential generation in neurons; thus, AACs are considered to be strategically placed inhibitory neurons controlling neuronal output.(More)
  • Szabolcs Oláh, Miklós Füle, Gergely Komlósi, Csaba Varga, Rita Báldi, Pál Barzó +1 other
  • 2009
GABA (gamma-aminobutyric acid) is predominantly released by local interneurons in the cerebral cortex to particular subcellular domains of the target cells. This suggests that compartmentalized, synapse-specific action of GABA is required in cortical networks for phasic inhibition. However, GABA released at the synaptic cleft diffuses to receptors outside(More)
There are two types of inhibitory postsynaptic potentials in the cerebral cortex. Fast inhibition is mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors, and slow inhibition is due to metabotropic GABA(B) receptors. Several neuron classes elicit inhibitory postsynaptic potentials through GABA(A) receptors, but possible distinct sources(More)
Phasic (synaptic) and tonic (extrasynaptic) inhibition represent the two most fundamental forms of GABA(A) receptor-mediated transmission. Inhibitory postsynaptic currents (IPSCs) generated by GABA(A) receptors are typically extremely rapid synaptic events that do not last beyond a few milliseconds. Although unusually slow GABA(A) IPSCs, lasting for tens of(More)
Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal-hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired(More)
An ion channel's function depends largely on its location and density on neurons. Here we used high-resolution immunolocalization to determine the subcellular distribution of the hyperpolarization-activated and cyclic-nucleotide-gated channel subunit 1 (HCN1) in rat brain. Light microscopy revealed graded HCN1 immunoreactivity in apical dendrites of(More)
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian(More)
Electrical synapses contribute to the generation of synchronous activity in neuronal networks. Several types of cortical GABAergic neurons acting via postsynaptic GABA(A) receptors also form electrical synapses with interneurons of the same class, suggesting that synchronization through gap junctions could be limited to homogenous interneuron populations.(More)
Synaptic interactions between neurons of the human cerebral cortex were not directly studied to date. We recorded the first dataset, to our knowledge, on the synaptic effect of identified human pyramidal cells on various types of postsynaptic neurons and reveal complex events triggered by individual action potentials in the human neocortical network. Brain(More)
Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the(More)