Learn More
Few reports have described in detail a true autoactivation process, where no extrinsic cleavage factors are required to initiate the autoactivation of a zymogen. Herein, we provide structural and mechanistic insight into the autoactivation of a multidomain serine protease: mannose-binding lectin-associated serine protease-2 (MASP-2), the first enzymatic(More)
The structure of the D254.256E double mutant of Arthrobacter xylose isomerase with Al3+ at both metal-binding sites was determined by the molecular replacement method at a conventional R-factor of 0.179. Binding of the two Al3+ does not alter the overall structure significantly. However, there are local rearrangements in the octahedral co-ordination sphere(More)
Coat proteins (CP) of five cucumovirus isolates, Cucumber mosaic virus (CMV) strains R, M and Trk7, Tomato aspermy virus (TAV) strain P and Peanut stunt virus (PSV) strain Er, were constructed by homology modelling. The X-ray structure of the Fny-CMV CP subunit B was used as a template. Models of cucumovirus CPs were built by the MODELLER program. Model(More)
Methodology and application of artificial neural networks in structure-activity relationships are reviewed focusing on the most frequently used three-layer feedforward back-propagation procedure. Two applications of neural networks are presented and a comparison of the performance with those of CoMFA and a classical QSAR analysis is also discussed.
The aspartic residue (Asp-189) at the base of the substrate-binding pocket of trypsin was replaced by serine (present in a similar position in chymotrypsin) through site-directed mutagenesis. The wild-type (with Asp-189 in the mature trypsin sequence) and mutant (Ser-189) trypsinogens were expressed in Escherichia coli, purified to homogeneity, activated by(More)
Recent advances in genetic engineering have led to a growing acceptance of the fact that enzymes work like other catalysts by reducing the activation barriers of the corresponding reactions. However, the key question about the action of enzymes is not related to the fact that they stabilize transition states but to the question to how they accomplish this(More)
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the(More)
The catalytic metal binding site of xylose isomerase from Arthrobacter B3728 was modified by protein engineering to diminish the inhibitory effect of Ca2+ and to study the competence of metals on catalysis. To exclude Ca2+ from Site 2 a double mutant D254E/D256E was designed with reduced space available for binding. In order to elucidate structural(More)
A three dimensional structural model of oligopeptidase B (OpB) was constructed by homology modeling. High resolution X-ray structure of prolyl oligopeptidase (PEP), the only protein with sequential and functional homology was used as a template. Initial models of OpB were built by the MODELLER and were analysed by the PROCHECK programs. The best quality(More)
An arylalkylamine-type calmodulin antagonist, N-(3, 3-diphenylpropyl)-N'-[1-R-(3, 4-bis-butoxyphenyl)ethyl]-propylene-diamine (AAA) is presented and its complexes with calmodulin are characterized in solution and in the crystal. Near-UV circular dichroism spectra show that AAA binds to calmodulin with 2:1 stoichiometry in a Ca(2+)-dependent manner. The(More)