Learn More
Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called "wave-like buckling and slipping" mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have(More)
The preparation and characterization of pure rare-earth-metal bulks with controllable nanostructures are reported in this paper. A novel 'oxygen-free' in situ synthesis technique that combines inert-gas condensation with spark plasma sintering (SPS) technology is proposed. Taking into account the special mechanisms of SPS consolidation and the scale effects(More)
Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible MWNT conductive network,(More)
A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and(More)
The effect of coherency WC/Co phase boundaries on the fracture toughness of the nanocrystalline WC-Co cemented carbides is studied by MD simulation method. The simulation results show that the nanocrystalline WC-Co cemented carbides with coherency WC/Co phase boundaries has higher fracture toughness than that without coherency WC/Co phase boundaries.(More)
  • 1