Learn More
CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si(+) implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475 degrees C. 0.25-mm-long diodes annealed to 300 degrees C have a response to 1539 nm radiation of 0.1 A W-(-1) at a reverse bias of 5 V and 1.2 A(More)
The goal of the research program that we describe is to break the emerging performance wall in microprocessor development arising from limited band-width and density of on-chip interconnects and chip-to-chip (processor-to-memory) electrical interfaces. Complementary metal-oxide semiconductor compatible photonic devices provide an infrastructure for(More)
Citation Holzwarth, C. W. et al. " High speed analog-to-digital conversion with silicon photonics. " Silicon Photonics IV. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how(More)
We demonstrate the first fully hitless (no out-of-band bit-loss/signal distortion) wavelength switching of microphotonic add-drop filters using silicon microring resonators, based on a new general approach for complete disabling of resonant-system amplitude and phase responses. For the first time, a general approach is proposed and experimentally(More)
Photonic Analog-to-Digital Conversion (ADC) has a long history. The premise is that the superior noise performance of femtosecond lasers working at optical frequencies enables us to overcome the bottleneck set by jitter and bandwidth of electronic systems and components. We discuss and demonstrate strategies and devices that enable the implementation of(More)
Efficient thermal tuning of 36pm/K and 60µW/GHz is shown for high-index-contrast silicon nitride second-order filters. Their compact size, large free-spectral range, low tuning power, and silicon compatibility make these resonators attractive for photonic integration. Microring resonators can be used as tunable filters, wavelength switches, add-drop(More)
We present the first experimental demonstration of recently proposed loop-coupled resonator device concepts, with characteristic transmission zeros, enabling optimally sharp passbands for channel add-drop filter applications. Fourth-order SiN-core and Si-core strong-confinement microring-resonator designs are described. Microphotonic circuits have enabled(More)