Learn More
We present SADSR (Security-Aware Adaptive DSR), a secure routing protocol for mobile ad hoc networks. SADSR authenticates the routing protocol messages using digital signatures based on asymmetric cryptography. The basic idea behind SADSR is to have multiple routes to each destination and store a local trust value for each node in the network. A trust value(More)
We design the simple hierarchical ordered planner (SHOP) and its successor, SHOP2, with two goals in mind: to investigate research issues in automated planning and to provide some simple, practical planning tools. SHOP and SHOP2 are based on a planning formalism called hierarchical task network planning. SHOP and SHOP2 use a search-control strategy called(More)
We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set(More)
Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching(More)
One of the assumptions in classical planning is that the environment is static: i.e., the planner is the only entity that can induce changes in the environment. A more realistic assumption is that the environment is dynamic; that is, there are other entities in the world and the actions generated by the planner may fail due to the operations of these(More)
Despite the fact that thousands of applications manipulate plans, there has been no work to date on managing large databases of plans. In this paper, we first propose a formal model of plan databases. We describe important notions of consistency and coherence for such databases. We then propose a set of operators similar to the relational algebra to query(More)