Furkan Gürpinar

Learn More
We propose a two-level system for apparent age estimation from facial images. Our system first classifies samples into overlapping age groups. Within each group, the apparent age is estimated with local regressors, whose outputs are then fused for the final estimate. We use a deformable parts model based face detector, and features from a pretrained deep(More)
This paper presents our contribution to ACM ICMI 2015 Emotion Recognition in the Wild Challenge (EmotiW 2015). We participate in both static facial expression (SFEW) and audio-visual emotion recognition challenges. In both challenges, we use a set of visual descriptors and their early and late fusion schemes. For AFEW, we also exploit a set of popularly(More)
Multimodal recognition of affective states is a difficult problem, unless the recording conditions are carefully controlled. For recognition “in the wild”, large variances in face pose and illumination, cluttered backgrounds, occlusions, audio and video noise, as well as issues with subtle cues of expression are some of the issues to target. In this paper,(More)
First impressions influence the behavior of people towards a newly encountered person or a human-like agent. Apart from the physical characteristics of the encountered face, the emotional expressions displayed on it, as well as ambient information affect these impressions. In this work, we propose an approach to predict the first impressions people will(More)
Affective computing, particularly emotion and personality trait recognition, is of increasing interest in many research disciplines. The interplay of emotion and personality shows itself in the first impression left on other people. Moreover, the ambient information, e.g. the environment and objects surrounding the subject, also affect these impressions. In(More)
We describe an end-to-end system for explainable automatic job candidate screening from video CVs. In this application, audio, face and scene features are first computed from an input video CV, using rich feature sets. These multiple modalities are fed into modality-specific regressors to predict apparent personality traits and a variable that predicts(More)
  • 1