Learn More
Abscisic acid (ABA) is a vital phytohormone that regulates mainly stomatal aperture and seed development, but ABA receptors involved in these processes have yet to be determined. We previously identified from broad bean an ABA-binding protein (ABAR) potentially involved in stomatal signalling, the gene for which encodes the H subunit of Mg-chelatase (CHLH),(More)
Epicuticular wax in plants limits non-stomatal water loss, inhibits postgenital organ fusion, protects plants against damage from UV radiation and imposes a physical barrier against pathogen infection. Here, we give a detailed description of the genetic, physiological and morphological consequences of a mutation in the rice gene WSL2, based on a comparison(More)
Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: Online Content Any additional Methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only(More)
Rice MONOCULM 1 (MOC1) and its orthologues LS/LAS (lateral suppressor in tomato and Arabidopsis) are key promoting factors of shoot branching and tillering in higher plants. However, the molecular mechanisms regulating MOC1/LS/LAS have remained elusive. Here we show that the rice tiller enhancer (te) mutant displays a drastically increased tiller number. We(More)
Chlorophyll (Chl) and lutein are the two most abundant and essential components in photosynthetic apparatus, and play critical roles in plant development. In this study, we characterized a rice mutant named young leaf chlorosis 1 (ylc1) from a 60Co-irradiated population. Young leaves of the ylc1 mutant showed decreased levels of Chl and lutein compared to(More)
MicroRNAs (miRNAs) modulate gene expression in different tissues and at diverse developmental stages, including grain development in japonica rice. To identify novel miRNAs in indica rice and to study their expression patterns during the entire grain filling process, small RNAs from all stages of grain development were sequenced and their expression(More)
An insert mutation of YELLOW - GREEN LEAF2 , encoding Heme Oxygenase 1 , results in significant reduction of its transcript levels, and therefore impairs chlorophyll biosynthesis in rice. Heme oxygenase (HO) in higher plants catalyzes the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering(More)
A dominant suppressor of the ABAR overexpressor, soar1-1D, from CHLH/ABAR [coding for Mg-chelatase H subunit/putative abscisic acid (ABA) receptor (ABAR)] overexpression lines was screened to explore the mechanism of the ABAR-mediated ABA signalling. The SOAR1 gene encodes a pentatricopeptide repeat (PPR) protein which localizes to both the cytosol and(More)
Mutation of the AM1 gene causes an albino midrib phenotype and enhances tolerance to drought in rice K+ efflux antiporter (KEA) genes encode putative potassium efflux antiporters that are mainly located in plastid-containing organisms, ranging from lower green algae to higher flowering plants. However, little genetic evidence has been provided on the(More)
In cereal crops, starch synthesis and storage depend mainly on a specialized class of plastids, termed amyloplasts. Despite the importance of starch, the molecular machinery regulating starch synthesis and amyloplast development remains largely unknown. Here, we report the characterization of the rice (Oryza sativa) floury endosperm7 (flo7) mutant, which(More)