Learn More
In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus(More)
Polyhydroxyalkanoates (PHAs) are aliphatic polyesters accumulated intracellularly by both Gram-negative and Gram-positive bacteria. However, compared to the PHAs of Gram-negative bacteria, few endotoxins (lipopolysaccharides, LPS), which would be co-purified with PHAs and cause immunogenic reactions, are found in the PHAs produced by Gram-positive bacteria.(More)
The removal of NO(X) at high temperature by Chelatococcus daeguensis TAD1 in a biotrickling filter was studied. Media components of the recycling liquid were screened using Plackett-Burman design and then were optimized using response surface methodology, which enhanced the efficiency of nitrate removal by TAD1. The optimal medium was used to perform(More)
A strain of bacteria CP1 with high nitrogen removal efficiency was newly isolated from the biofilm of a biofilter for removal of NOx from flue gas. The isolate was identified as Pseudomonas aeruginosa based on its physiological and biochemical characteristics and the results of 16S rRNA gene homology analysis. The new isolate had a high denitrifying(More)
A particularly successful polyhydroxyalkanoate (PHA) in industrial applications is poly (3-hydroxybutyrate) (PHB). However, one of the major obstacles for wider application of PHB is the cost of its production and purification. Therefore, it is desirable to discover a method for producing PHB in large quantities at a competitive price. Glycerol is a cheap(More)
Chelatococcus daeguensis TAD1 was demonstrated to be an aerobic denitrifier. It can utilize not only nitrate and nitrite but also ammonium at high temperature (about 50 °C). The strain had the capability to remove 122.7 and 71.7 mg L−1 NH4+-N by 18 h at 50 and 30 °C, respectively. Triplicate heterotrophic nitrification experiments showed that 32.3 % of(More)
  • 1