Fumito Naganuma

Learn More
Molecular imaging in neuroscience is a new research field that enables visualization of the impact of molecular events on brain structure and function in humans. While magnetic resonance-based imaging techniques can provide complex information at the level of system, positron emission tomography (PET) enables determination of the distribution and density of(More)
L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the(More)
Histaminergic neurons are activated by histamine H(3) receptor (H(3)R) antagonists, increasing histamine and other neurotransmitters in the brain. The prototype H(3)R antagonist thioperamide increases locomotor activity and anxiety-like behaviours; however, the mechanisms underlying these effects have not been fully elucidated. This study aimed to determine(More)
Monoamine neurotransmitters should be immediately removed from the synaptic cleft to avoid excessive neuronal activity. Recent studies have shown that astrocytes and neurons are involved in monoamine removal. However, the mechanism of monoamine transport by astrocytes is not entirely clear. We aimed to elucidate the transporters responsible for monoamine(More)
Histamine clearance is an essential process for avoiding excessive histaminergic neuronal activity. Previous studies using rodents revealed the predominant role of astrocytes in brain histamine clearance. However, the molecular mechanism of histamine clearance has remained unclear. We detected histamine N-methyltransferase (HNMT), a histamine-metabolizing(More)
INTRODUCTION H(1) antihistamines are often used in the medication for allergic diseases, coughs and colds, and insomnia, with or without prescription, even though their sedative properties are a potentially dangerous unwanted side effect that is not properly recognized. These sedative properties have been evaluated using the incidence of subjective(More)
Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory,(More)
The dysregulation of monoamine clearance in the central nervous system occurs in various neuropsychiatric disorders, and the role of polyspecific monoamine transporters in monoamine clearance is increasingly highlighted in recent studies. However, no study to date has properly characterized polyspecific monoamine transporters in the mouse brain. In the(More)
Brain histamine acts as a neurotransmitter and regulates various physiological functions, such as learning and memory, sleep-wake cycles, and appetite regulation. We have recently shown that histamine H3 receptor (H3R) is expressed in primary mouse microglia and has a strong influence on critical functions in microglia, including chemotaxis, phagocytosis,(More)
Pancreatic α-cells secrete glucagon to maintain energy homeostasis. Although histamine has an important role in energy homeostasis, the expression and function of histamine receptors in pancreatic α-cells remains unknown. We found that the histamine H3 receptor (H3R) was expressed in mouse pancreatic α-cells and αTC1.6 cells, a mouse pancreatic α-cell line.(More)
  • 1