Learn More
In a variety of cells, the Ca2+ signalling process is mediated by the endoplasmic-reticulum-membrane-associated Ca2+ release channel, inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R). Being ubiquitous and present in organisms ranging from humans to Caenorhabditis elegans, InsP3R has a vital role in the control of cellular and physiological processes(More)
In contrast to compact myelin, the series of paranodal loops located in the outermost lateral region of myelin is non-compact; the intracellular space is filled by a continuous channel of cytoplasm, the extracellular surfaces between neighboring loops keep a definite distance, but the loop membranes have junctional specializations. Although the proteins(More)
Mouse embryonic stem (mES) cells have the potential to differentiate into all types of cells, but the physiological properties of undifferentiated mES cells, including Ca2+ signaling systems, are not fully understood. In this study, we investigated Ca2+ signaling pathways in mES cells by using confocal Ca2+ imaging systems, patch clamp techniques and(More)
Opalin is a transmembrane protein detected specifically in mammalian oligodendrocytes. Opalin homologs are found only in mammals and not in the genome sequences of other animal classes. We first determined the nucleotide sequences of Opalin orthologs and their flanking regions derived from four prosimians, a group of primitive primates. A global comparison(More)
The cerebellar cortical circuit of mammals develops via a series of magnificent cellular events in the postnatal stage of development to accomplish the formation of functional circuit architectures. The contribution of genetic factors is thought to be crucial to cerebellar development. Therefore, it is essential to analyze the underlying transcriptome(More)
The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is a tetrameric intracellular inositol 1,4,5-trisphosphate (IP3)-gated Ca2+ release channel (calculated molecular mass = approximately 313 kDa/subunit). We studied structural and functional coupling in this protein complex by limited (controlled) trypsinization of membrane fractions from mouse(More)
BACKGROUND Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)(4)-Asp (HKD) motifs, which are critical for PLD activity.(More)
Apoptosis-associated tyrosine kinase (AATYK) is a protein kinase that is predominantly expressed in the nervous system and is involved in apoptosis and neurite growth of cerebellar granule cells. In this study, we cloned three new members of the mouse AATYK family, AATYK1B, AATYK2 and AATYK3. AATYK1B is a splicing variant of the previously reported AATYK1(More)
Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin-/-) mice were born at a Mendelian(More)
Opalin/Tmem10 is a myelin-associated sialylglycoprotein that is specific to only the mammalian central nervous system. However, little is known about the properties or function of this protein. Here, we analyzed the expression and glycosylation patterns of Opalin in the postnatal mouse brain. Immunolocalization patterns of Opalin were similar to those of(More)