Learn More
BACKGROUND Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker's yeast (Saccharomyces(More)
Here, we demonstrate display of beta-glucosidase (BGL) on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. A total of four candidate anchor proteins (SPBC21D10.06c, SPBC947.04, SPBC19C7.05, and SPBC359.04c) were selected from among almost all of S. pombe membrane proteins. The C-terminus of each anchor protein was genetically(More)
The effect of phycobilisome antenna-truncation in the cyanobacterium Synechocystis sp. PCC 6803 on biomass production and glycogen accumulation have not yet been fully clarified. To investigate these effects here, the apcE gene, which encodes the anchor protein linking the phycobilisome to the thylakoid membrane, was deleted in a glucose tolerant strain of(More)
BACKGROUND While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S.(More)
Three enzymes responsible for the transhydrogenase-like shunt, including malic enzyme (encoded by MAE1), malate dehydrogenase (MDH2), and pyruvate carboxylase (PYC2), were overexpressed to regulate the redox state in xylose-fermenting recombinant Saccharomyces cerevisiae. The YPH499XU/MAE1 strain was constructed by overexpressing native Mae1p in the(More)
The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by(More)
BACKGROUND Isobutanol is an important biorefinery target alcohol that can be used as a fuel, fuel additive, or commodity chemical. Baker's yeast, Saccharomyces cerevisiae, is a promising organism for the industrial manufacture of isobutanol because of its tolerance for low pH and resistance to autolysis. It has been reported that gene deletion of the(More)
BACKGROUND Hydrothermal pretreatment of lignocellulosic biomass such as rice straw can dissolve part of the lignin and hemicellulose into a liquid fraction, thus facilitating enzyme accessibility to cellulose in bioethanol production process. Lignin is awaited to be recovered after hydrothermal pretreatment for utilization as value-added chemical, and(More)
We performed metabolome and metabolite–metabolite correlation analyses for eight single-gene deletion mutants of Saccharomyces cerevisiae to evaluate the physiology of glucose metabolism. The irreversible enzyme reactions can become bottlenecks when intracellular metabolism is perturbed by direct interference from the central metabolic pathway by gene(More)
BACKGROUND The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass components is required. Organosolv(More)