Learn More
To complete the metabolic map for an entire class of compounds, it is essential to identify gene-metabolite correlations of a metabolic pathway. We used liquid chromatography-mass spectrometry (LC-MS) to identify the flavonoids produced by Arabidopsis thaliana wild-type and flavonoid biosynthetic mutant lines. The structures of 15 newly identified and eight(More)
The notion that plants use specialized metabolism to protect against environmental stresses needs to be experimentally proven by addressing the question of whether stress tolerance by specialized metabolism is directly due to metabolites such as flavonoids. We report that flavonoids with radical scavenging activity mitigate against oxidative and drought(More)
To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with anthocyanin biosynthetic genes. Anthocyanin was drastically reduced(More)
BACKGROUND Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker's yeast (Saccharomyces(More)
As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct(More)
Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome-wide association studies (GWAS) were conducted to investigate the genetic architecture behind the(More)
BACKGROUND Increasing awareness of limitations to natural resources has set high expectations for plant science to deliver efficient crops with increased yields, improved stress tolerance, and tailored composition. Collections of representative varieties are a valuable resource for compiling broad breeding germplasms that can satisfy these diverse needs. (More)
Here, we demonstrate display of beta-glucosidase (BGL) on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. A total of four candidate anchor proteins (SPBC21D10.06c, SPBC947.04, SPBC19C7.05, and SPBC359.04c) were selected from among almost all of S. pombe membrane proteins. The C-terminus of each anchor protein was genetically(More)
The effect of phycobilisome antenna-truncation in the cyanobacterium Synechocystis sp. PCC 6803 on biomass production and glycogen accumulation have not yet been fully clarified. To investigate these effects here, the apcE gene, which encodes the anchor protein linking the phycobilisome to the thylakoid membrane, was deleted in a glucose tolerant strain of(More)
The MS/MS spectral tag (MS2T) library-based peak annotation procedure was developed for informative non-targeted metabolic profiling analysis using LC-MS. An MS2T library of Arabidopsis metabolites was created from a set of MS/MS spectra acquired using the automatic data acquisition function of the mass spectrometer. By using this library, we obtained(More)