Fumiko Morohoshi

Learn More
The AML1-CBFbeta transcription factor complex is essential for the definitive hematopoiesis of all lineages and is the most frequent target of chromosomal rearrangements in human leukemia. In the t(8;21) translocation associated with acute myeloid leukemia (AML), the AML1(CBFA2/PEBP2alphaB) gene is juxtaposed to the MTG8(ETO/CDR) gene. We show here that the(More)
The EWS gene was found at the chromosome breakpoints in Ewing sarcoma, and the FUS/TLS gene was found at the breakpoints of myxoid liposarcoma and acute myeloid leukemia. These genes encode proteins that carry a highly homologous RNA binding domain. Fusion proteins made of the N-terminal half of EWS or FUS/TLS and transcriptional regulatory proteins, also(More)
We previously isolated RBP56 cDNA by PCR using mixed primers designed from the conserved sequences of the RNA binding domain of FUS/TLS and EWS proteins. RBP56 protein turned out to be hTAFII68 which was isolated as a TATA-binding protein associated factor (TAF) from a sub-population of TFIID complexes (Bertolotti A., Lutz, Y., Heard, D.J., Chambon, P.,(More)
AML1-MTG8 fusion protein, which is produced from the rearranged gene formed between AML1 and MTG8 in myeloid leukemia with t(8;21) chromosomal translocation, plays an important role in the pathogenesis of leukemia. We previously showed that ectopically expressed AML1-MTG8 fusion protein is associated with an MTG8-like protein in the mouse myeloid precursor(More)
The biologically effective dose of solar UV radiation was estimated from the inactivation of UV-sensitive Bacillus subtilis spores. Two types of independent measurements were carried out concurrently at the Aerological Observatory in Tsukuba: one was the direct measurement of colony-forming survival that provided the inactivation dose per minute (ID/min)(More)
Despite the remarkable resistance to desiccation, Bacillus subtilis spores manifest indications of DNA damage when being kept in an extremely dry environment made by high vacuum. Spores of strain TKJ3422 (uvrA10 spl-1 recA4) with triple repair defects lost colony-forming capacity dependent on the duration and strength of the exposure. Mutations to(More)
We isolated 607 independent nalidixic acid-resistant mutants from Bacillus subtilis. A 163 by DNA segment from a 5′ portion of the gyrA gene was amplified from the DNA of each mutant strain. After heat denaturation, the product was subjected to gel electrophoresis to detect conformational polymorphism of single-strand DNA (PCR-SSCP analysis). Mobility(More)
By prophage transformation and subcloning, we have obtained Bacillus subtilis DNA fragments that could complement the hypersensitivity of ada (adaptive response deficient) mutants to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The nucleotide sequence contained two open reading frames that were assigned to the genes adaA and adaB, encoding(More)
We have cloned a Bacillus subtilis DNA fragment that could correct the defect in a constitutive O6-methylguanine-DNA alkyltransferase (Dat1). This fragment also corrected the hypersensitivity of the strain TKJ6951(ada-1 dat-1) to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In the fragment, the gene activity resides in a region of about 850 bp which(More)
In Bacillus subtilis, the adaptive response to DNA alkylation depends on the ada operon, which consists of the adaA and adaB genes, which encode methylphosphotriester DNA methyltransferase (AdaA protein) and O6-methylguanine DNA methyltransferase (AdaB protein), respectively. A structural gene (alkA) that encodes 3-methyladenine DNA glycosylase was found(More)