Fumihiro Takayama

Learn More
We investigate a new class of dark matter: superweakly interacting massive particles (super-WIMPs). As with conventional WIMPs, super-WIMPs appear in well motivated particle theories with naturally the correct relic density. In contrast to WIMPs, however, super-WIMPs are impossible to detect in all conventional dark matter searches. We consider the concrete(More)
Nitric oxide (NO), a simple diatomic free radical, is known to play a critical physiological role in diverse organisms. An iron complex, with N-(dithiocarboxy)sarcosine (Fe-DTCS), has a high affinity for endogenous NO and can trap, stabilize, and accumulate it. The stable NO adduct thus formed is detectable at room temperature with electron paramagnetic(More)
We analyse the cosmic-ray signatures of decaying gravitino dark matter in a model-independent way based on an operator analysis. Thermal leptogenesis and universal boundary conditions at the GUT scale restrict the gravitino mass to be below 600 GeV. Electron and positron fluxes from gravitino decays, together with the standard GALPROP background, cannot(More)
Collisionless, cold dark matter in the form of weakly interacting massive particles (WIMPs) is well motivated in particle physics, naturally yields the observed relic density, and successfully explains structure formation on large scales. On small scales, however, it predicts too much power, leading to cuspy halos, dense cores, and large numbers of(More)
We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of(More)
Neutralino dark matter is well motivated, but also suffers from two shortcomings: it requires gravity-mediated supersymmetry breaking, which generically violates flavor constraints, and its thermal relic density Omega is typically too large. We propose a simple solution to both problems: neutralinos freeze-out with Omega approximately 10-100, but then decay(More)
  • 1