Learn More
OBJECTIVE The present study was undertaken to explore the relationship between the characteristic geometry of aneurysms prone to rupture and the blood flow patterns therein, using microsurgically produced aneurysms that simulated human middle cerebral artery aneurysms in scale and shape. METHODS We measured in vivo velocity profiles using our 20-MHz,(More)
There is accumulating circumstantial evidence suggesting that endothelial cell dysfunction contributes to the "no-reflow" phenomenon in postischemic kidneys. Here, we demonstrated the vulnerability of in vitro, ex vivo, and in vivo endothelial cells exposed to pathophysiologically relevant insults, such as oxidative and nitrosative stress or ischemia. All(More)
The goal of this study was to evaluate microheterogeneity of myocardial blood flow and its dependence on arterial O2 tension (PaO2). We measured within-layer distribution of regional blood flows in the left ventricles of anesthetized rabbits in both normoxic and hypoxic states with myocardial region sizes in the range of 0.01-1.0 mm2. A novel method of(More)
The interaction between monocytes and endothelial cells is considered to play a major role in the early stage of atherosclerosis, and the involved endothelial cell micromechanics may provide us with important aspects of atherogenesis. In the present study, we evaluated (i) the endothelial cell-to-cell and cell-to-substrate gaps with the electric(More)
Intra-aortic measurement of nitric oxide (NO) would provide valuable insights into NO bioavailability in systemic circulation and vascular endothelial function. In the present study, we thus developed a catheter-type NO sensor to measure intra-aortic NO concentration in vivo. An NO sensor was encased and fixed in a 4-Fr catheter. The sensor was then located(More)
BACKGROUND A noninvasive technique to monitor renal microcirculation would be a useful tool for investigation of renal disease and the effects of drugs on the renal system. We have developed a novel, less invasive technique to visualize renal microcirculation in vivo using an intravital tapered-tip (1 mm phi) lens-probe (pencil lens-probe) videomicroscopy,(More)
BACKGROUND Left ventricular (LV) hypertrophy is often present in patients with diastolic heart failure. However, stiffness of hypertrophied cardiomyocytes in the transverse direction has not been fully elucidated. The aim of this study was to assess passive cardiomyocyte stiffness of hypertrophied hearts in the transverse direction and the influence of(More)
BACKGROUND Recent studies in vitro have demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor (EDHF) in animals and humans. The aim of this study was to evaluate our hypothesis that endothelium-derived H2O2 is an EDHF in vivo and plays an important role in coronary autoregulation. METHODS AND(More)
Endothelium-derived nitric oxide (NO) is synthesized in response to chemical and physical stimuli. Here, we investigated a possible role of the endothelial cell glycocalyx as a biomechanical sensor that triggers endothelial NO production by transmitting flow-related shear forces to the endothelial membrane. Isolated canine femoral arteries were perfused(More)
We have recently demonstrated that endogenous H2O2 plays an important role in coronary autoregulation in vivo. However, the role of H2O2 during coronary ischemia-reperfusion (I/R) injury remains to be examined. In this study, we examined whether endogenous H2O2 also plays a protective role in coronary I/R injury in dogs in vivo. Canine subepicardial small(More)