Fumie Mizushima

  • Citations Per Year
Learn More
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism for the tau protein, it is still unclear how it is transformed from a normal structure in a neuron. To examine the linkage-dependent contribution of each repeat peptide (R1-R4) to filament formation of the three- or four-repeat microtubule-binding domain(More)
In the brains of Alzheimer's disease patients, the tau protein abnormally aggregates to form an insoluble paired helical filament (PHF). Since the third repeat structure (R3) of the tau microtubule-binding domain plays an essential role in PHF formation and self-aggregates most significantly in an aqueous solution of 20-40% trifluoroethanol (TFE), its(More)
The heparin-induced self-aggregation behaviours of four repeat peptides (R1-R4) in an acidic solution (pH = 4.5) were investigated by fluorescence and circular dichroism (CD) measurements and compared with those in a neutral solution (pH = 7.5). In contrast with the self-aggregation-resistive behaviours of the R1 and R4 repeat peptides in the neutral(More)
To clarify the contribution of the three- or four-repeated peptide moiety in tau microtubule-binding domain (MBD) to paired helical filament (PHF) formation, conformational transition accompanied by heparin-induced filament formation was investigated stepwise for four repeat peptides (R1-R4), one three-repeated R1-R3-R4 peptide (3RMBD), and one(More)
To examine whether or not DNA accelerates the paired helical filament (PHF) formation of tau, the effect of various types of DNAs on filament formations of three-repeated and four-repeated microtubule-binding domains (3RMBD and 4RMBD, respectively) of tau protein was investigated by monitoring the change of thioflavin S fluorescence intensity, that is(More)
(MTs) and plays an important role in the regulation of MT formation and stabilization. This MT-associated tau is a highly soluble protein and hardly shows any tendency to assemble under physiological conditions. However, it dissociates from MT and aggregates to form insoluble paired helical filament (PHF) fibers in the brain of Alzheimer’s disease (AD)(More)
  • 1