Fulvia Ortolani

Learn More
BACKGROUND Heart valve bioprostheses for cardiac valve replacement are fabricated by xeno- or allograft tissues. Decellularization techniques and tissue engineering technologies applied to these tissues might contribute to the reduction in risk of calcification and immune response. Surprisingly, there are few data on the cell phenotypes obtained after(More)
Detailed characterization of the subdermal model is a significant tool for better understanding of calcification mechanisms occurring in heart valves. In previous ultrastructural investigation on six-week-implantated aortic valve leaflets, modified pre-embedding glutaraldehyde-cuprolinic-blue reactions (GA-CB) enabled sample decalcification with concurrent(More)
Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large(More)
OBJECTIVE To compare the ultrastructural appearance of oocytes after vitrification and warming with two different devices. DESIGN Oocytes were examined by ultrastructural analysis after vitrification and warming with use of closed (CryoTip; Irvine Scientific, Santa Ana, CA) or open (Cryotop; Kitazato BioPharma Co., Ltd., Shizuoka, Japan) devices. (More)
Extracellular matrix (ECM) scaffolds isolated from valvulated conduits can be useful in developing durable bioprostheses by tissue engineering provided that anatomical shape, architecture, and mechanical properties are preserved. As evidenced by SEM, intact scaffolds were derived from porcine aortic valves by the combined use of Triton X-100 and cholate(More)
Metastatic calcification of cardiac valves is a common complication in patients affected by chronic renal failure. In this study, primary bovine aortic valve interstitial cells (AVICs) were subjected to pro-calcific treatments consisting in cell stimulation with (i) elevated inorganic phosphate (Pi = 3 mM), to simulate hyperphosphatemic conditions; (ii)(More)
H9c2 undergoing cardiac differentiation induced by all-trans-retinoic acid were investigated for mitochondria structural features together with the implied functional changes, as a model for the study of mitochondrial development in cardiogenic progenitor cells. As the expression of cardiac markers became detectable, mitochondrial mass increased and(More)
The potential for in vitro colonization of decellularized valves by human bone marrow mesenchymal stem cells (hBM-MSCs) towards the anisotropic layers ventricularis and fibrosa and in homo- vs. heterotypic cell-ECM interactions has never been investigated. hBM-MSCs were expanded and characterized by immunofluorescence and FACS analysis. Porcine and human(More)
Unlike its application for atherosclerotic plaque analysis, Raman microspectroscopy was sporadically used to check the sole nature of bioapatite deposits in stenotic aortic valves, neglecting the involvement of accumulated lipids/lipoproteins in the calcific process. Here, Raman microspectroscopy was employed for examination of stenotic aortic valve(More)
Valve dystrophic calcification is a common disorder affecting normophosphatemic subjects. Here, cultured aortic valve interstitial cells (AVICs) were treated 3 to 28 days with phosphate (Pi) concentrations spanning the normal range in humans (0.8, 1.3, and 2.0 mM) alone or supplemented with proinflammatory stimuli to assess possible priming of(More)