Fuko Matsuda

Learn More
The mammalian ovary is an extremely dynamic organ in which a large majority of follicles are effectively eliminated throughout their reproductive life. Due to the numerous efforts of researchers, mechanisms regulating follicular growth and atresia in mammalian ovaries have been clarified, not only their systemic regulation by hormones (gonadotropins) but(More)
'Human Immunoglobulin Heavy Variable Genes', the fourth report of the 'IMGT Locus on Focus' section, comprises five tables entitled: (1) 'Number of human germline IGHV genes at 14q32.33 and potential repertoire'; (2) 'Human germline IGHV genes at 14q32.33'; (3) 'Human IGHV orphons on chromosome 15 (15q11.2)'; (4) 'Human IGHV orphons on chromosome 16(More)
Mutations in BSCL2/seipin cause Berardinelli–Seip congenital lipodystrophy (BSCL), a rare recessive disorder characterised by near absence of adipose tissue and severe insulin resistance. We aimed to determine how seipin deficiency alters glucose and lipid homeostasis and whether thiazolidinediones can rescue the phenotype. Bscl2 −/− mice were generated and(More)
A luteinising hormone (LH) surge is fundamental to the induction of ovulation in mammalian females. The administration of a preovulatory level of oestrogen evokes an LH surge in ovariectomised females, whereas the response to oestrogen in castrated males differs among species; namely, the LH surge-generating system is sexually differentiated in some species(More)
More than 99% of follicles in mammalian ovaries undergo atresia, but the mechanisms regulating the strict selection process are still unclear. Granulosa cell apoptosis is considered the trigger of follicular atresia, which occurs in advance of the death of an oocyte. Cellular FLICE-like inhibitory protein (cFLIP), a homologue of procaspase-8 (also called(More)
In the mammalian ovary, more than 99% of follicles degenerate without ovulation and few oocytes ovulate and succeed to the next generation. Granulosa cell apoptosis plays a critical role in this process, follicular atresia. However, the molecular mechanisms responsible for the regulation of granulosa cell apoptosis have not been clarified. Death ligand and(More)
In mitochondrion-dependent type II apoptosis, BH3-interacting domain death agonist (BID) and BCL-2-associated X protein (BAX) promote death ligand and receptor-mediated cell death. In porcine ovaries, the levels of BID and BAX increase in follicular granulosa cells during atresia. In the present study, to confirm the pro-apoptotic activity of BID and BAX in(More)
Follicular selection predominantly depends on granulosa cell apoptosis in porcine ovaries, but the molecular mechanisms regulating the induction of apoptosis in granulosa cells during follicular selection remain incompletely understood. To determine the role of X-linked inhibitor of apoptosis protein (XIAP), which suppresses caspase-3, -7 and -9 activities(More)
In mammalian ovaries, most follicles are lost by atresia before ovulation. It has become apparent that the apoptosis of granulosa cells induces follicular atresia. Forkhead box O3 (FOXO3), also called FKHRL1 (forkhead in rhabdomyosarcoma-like 1), is a proapoptotic molecule that belongs to the FOXO subfamily of forkhead transcription factors. Foxo3-deficient(More)
After the discovery of hypothalamic kisspeptin encoded by the Kiss1 gene, the central mechanism regulating gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion, is gradually being unraveled. This has increased our understanding of the central mechanism regulating puberty and subsequent reproductive performance in mammals.(More)