Learn More
Linear discriminant analysis (LDA) is a well-known dimensionality reduction technique, which is widely used for many purposes. However, conventional LDA is sensitive to outliers because its objective function is based on the distance criterion using L2-norm. This paper proposes a simple but effective robust LDA version based on L1-norm maximization, which(More)
This paper presents a novel approach based on enhanced local directional patterns (ELDP) to face recognition, which adopts local edge gradient information to represent face images. Specially, each pixel of every facial image sub-block gains eight edge response values by convolving the local 3 3 neighborhood with eight Kirsch masks, respectively. ELDP just(More)
Conventional discriminant locality preserving projection (DLPP) is a dimensionality reduction technique based on manifold learning, which has demonstrated good performance in pattern recognition. However, because its objective function is based on the distance criterion using L2-norm, conventional DLPP is not robust to outliers which are present in many(More)
Obtaining robust and efficient rotation-invariant texture features in content-based image retrieval field is a challenging work. We propose three efficient rotation-invariant methods for texture image retrieval using copula model based in the domains of Gabor wavelet (GW) and circularly symmetric GW (CSGW). The proposed copula models use copula function to(More)
  • 1