Learn More
The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and(More)
Retinoic-acid-inducible gene-I (RIG-I; also known as DDX58) is a cytoplasmic pathogen recognition receptor that recognizes pathogen-associated molecular pattern (PAMP) motifs to differentiate between viral and cellular RNAs. RIG-I is activated by blunt-ended double-stranded (ds)RNA with or without a 5'-triphosphate (ppp), by single-stranded RNA marked by a(More)
Innate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune(More)
Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We(More)
Bacterial adaptive immunity uses CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR transcripts for foreign DNA degradation. In type II CRISPR-Cas systems, activation of Cas9 endonuclease for DNA recognition upon guide RNA binding occurs by an unknown mechanism. Crystal structures of Cas9 bound(More)
Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two(More)
To induce virus resistance in tobacco and rice we constructed hairpin RNA expression system harbouring inverted repeat fragments of coat protein cDNA of Potato virus Y (PVY) or Rice stripe virus (RSV). These structures were driven by three promoters [cauliflower mosaic virus 35S (CaMV 35S), polyubiqutin gene of maize (Ubi), and Pharbitis nil leucine zipper(More)
The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system.(More)
Viral resistance can be effectively induced in transgenic plants through their silencing machinery. Thus, we designed nine short hairpin RNAs (shRNA) constructs to target nuclear inclusion protein b (NIb), helper component proteinase (HC-Pro), cylindrical inclusion protein (CI) and viral protein genome linked (VPg) genes of Potato virus Y (PVYN) and Tobacco(More)
RIG-I (Retinoic Acid Inducible Gene-I) is a cytosolic innate immune receptor that detects atypical features in viral RNAs as foreign to initiate a Type I interferon signaling response. RIG-I is present in an autoinhibited state in the cytoplasm and activated by blunt-ended double-stranded (ds)RNAs carrying a 5' triphosphate (ppp) moiety. These features(More)