Fu-Niu Qin

Learn More
Embryo implantation requires a precise synchronism between the receptive uterus and activated blastocyst and is regulated by complicated molecular networks. Although many implantation-related genes have been identified, the crosstalk among them is still unknown. Snail, a transcription repressor, plays a central role during epithelial-mesenchymal transition.(More)
The Hippo signaling pathway has emerged as a critical regulator for organ size control. The serine/threonine protein kinases Mst1 and Mst2, mammalian homologs of the Hippo kinase from Drosophila, play the central roles in the Hippo pathway controlling the cell proliferation, differentiation, and apoptosis during development. Mst1/2 can be activated by(More)
The Hippo pathway plays a crucial role in controlling organ size by inhibiting cell proliferation and promoting cell death. Recent findings implicate that this pathway is involved in the process of intestinal regeneration and tumorigenesis. Here we summarize current studies for the function of the Hippo signaling pathway in intestinal homeostasis,(More)
The prevalence of diabetes is increasing worldwide with the trend of patients being young and creating a significant burden on health systems, including reproductive problems, but the effects of diabetes on embryo implantation are still poorly understood. Our study was to examine effects of diabetes on mouse embryo implantation, providing experimental basis(More)
Receptivity is a limited time in which uterine endometrium can establish a successful dialogue with blastocyst. This study was to investigate the effect of asynchronous embryo transfer on uterine receptivity in mice. Embryos under different stages were transferred into two oviduct sides of a recipient mouse on day 1 of pseudopregnancy. Our results showed(More)
  • 1