Learn More
An in vitro ischemia model (oxygen, glucose, and serum deprivation) is used to investigate the possible cellular and molecular mechanisms responsible for cerebral ischemia. We have previously demonstrated that supernatants derived from ischemic microglia can protect ischemic brain cells by releasing GDNF and TGF-beta1. In the present study, we investigate(More)
Granulocyte colony-stimulating factor (G-CSF) inhibits programmed cell death and stimulates neuronal progenitor differentiation. Neuronal stem cells transplanted into injured spinal cord can survive, differentiating into astroglia and oligodendroglia, and supporting axon growth and myelination. Herein, we evaluate the combined effects of G-CSF and neuronal(More)
Amniotic fluid mesenchymal stem cells have the ability to secrete neurotrophic factors that are able to promote neuron survival in vitro. The purpose of this study was to evaluate the effects of neurotrophic factors secreted by rat amniotic fluid mesenchymal stem cells on regeneration of sciatic nerve after crush injury. Fifty Sprague-Dawley rats weighing(More)
OBJECTIVE Amniotic fluid mesenchymal stem cells (MSCs) have the potential to differentiate into neuronal stem cells in vitro. We evaluated using amniotic fluid MSCs to support or enhance the ability of the injured sciatic nerve to cross a nerve gap. MATERIALS AND METHODS We created a 5 mm nerve defect in Sprague Dawley rats. One group received therapy(More)
Group technology (GT) is a useful way to increase productivity with high quality in flexible manufacturing systems. Cell formation (CF) is a key step in GT. It is used to design a good cellular manufacturing system that uses the similarity measure between parts and machines so that it can identify part families and machine groups. Recently, fuzzy clustering(More)
Microglia-derived protection of brain cells (microglia, astrocytes, and neurons) during in vitro ischemic stress (deprivation of glucose, oxygen, and serum) was determined. Trypan blue exclusion assay, immunoblocking assay, Western blot analysis, and ELISA assay were used to determine the molecular mechanisms responsible for the microglia-derived(More)
Although gait change is considered a useful indicator of severity in animal models of Parkinson's disease, systematic and extensive gait analysis in animal models of neurological deficits is not well established. The CatWalk-assisted automated gait analysis system provides a comprehensive way to assess a number of dynamic and static gait parameters(More)
Proper trace element level and antioxidant enzyme activity are crucial for the brain in maintaining normal neurological functions. To our knowledge, alteration of lipid peroxidation status, trace element level, and antioxidant activity in the homogenates of brain cortex after cerebral ischemia in gerbil, however, has not been investigated so far. Male(More)
Previous studies have demonstrated that magnesium sulfate has cytoprotective properties for treating experimental rat brain injuries. The aim of this study is to evaluate changes in energy-related metabolites and glutamate in the cortex of gerbils subjected to focal cerebral ischemia with the pretreatment of magnesium sulfate. The focal cerebral ischemia(More)
Sesamin and sesamolin, abundant lignans found in sesame oil, have been demonstrated to possess several bioactivities beneficial for human health. Excess generation of nitric oxide in lipopolysaccharide-stimulated rat primary microglia cells was significantly attenuated when they were pretreated with sesamin or sesamolin. The neuroprotective effect of(More)