Frits van den Berg

Learn More
The increasing number and size of wind farms call for more data on human response to wind turbine noise, so that a generalized dose-response relationship can be modeled and possible adverse health effects avoided. This paper reports the results of a 2007 field study in The Netherlands with 725 respondents. A dose-response relationship between calculated(More)
This paper describes the Quiet Places Project in Amsterdam. The purpose of the study was to find out: (1) which public quiet places there are according to Amsterdam residents; (2) what characterizes a quiet place; (3) to what extent do residents want peace and quiet; (4) how do residents realize these needs. The factors determining the need for quietness(More)
The current study was the first to assess stress reactions associated with wind turbine noise (WTN) exposure using self-reported and objective measures. Randomly selected participants, aged 18-79 yr (606 males; 632 females), living between 0.25 and 11.22 km from wind turbines, were exposed to outdoor calculated WTN levels up to 46 dBA (response rate 78.9%).(More)
Health Canada, in collaboration with Statistics Canada, and other external experts, conducted the Community Noise and Health Study to better understand the impacts of wind turbine noise (WTN) on health and well-being. A cross-sectional epidemiological study was carried out between May and September 2013 in southwestern Ontario and Prince Edward Island on(More)
STUDY OBJECTIVES To investigate the association between self-reported and objective measures of sleep and wind turbine noise (WTN) exposure. METHODS The Community Noise and Health Study, a cross-sectional epidemiological study, included an in-house computer-assisted interview and sleep pattern monitoring over a 7 d period. Outdoor WTN levels were(More)
Previous studies indicate that residents may benefit from a "quiet side" to their dwellings. The influence of the level of road traffic noise exposure at the least exposed side on road traffic noise annoyance was studied in Amsterdam, The Netherlands. Road traffic noise exposure was assessed at the most and least exposed façade (Lden,most and Lden,least(More)
The possibility that wind turbine noise (WTN) affects human health remains controversial. The current analysis presents results related to WTN annoyance reported by randomly selected participants (606 males, 632 females), aged 18-79, living between 0.25 and 11.22 km from wind turbines. WTN levels reached 46 dB, and for each 5 dB increase in WTN levels, the(More)
This paper provides experimental validation of the sound power level data obtained from manufacturers for the ten wind turbine models examined in Health Canada's Community Noise and Health Study (CNHS). Within measurement uncertainty, the wind turbine sound power levels measured using IEC 61400-11 [(2002). (International Electrotechnical Commission,(More)
This paper provides calculations of outdoor sound pressure levels (SPLs) at dwellings for 10 wind turbine models, to support Health Canada's Community Noise and Health Study. Manufacturer supplied and measured wind turbine sound power levels were used to calculate outdoor SPL at 1238 dwellings using ISO [(1996). ISO 9613-2-Acoustics] and a Swedish noise(More)
Living within the vicinity of wind turbines may have adverse impacts on health measures associated with quality of life (QOL). There are few studies in this area and inconsistent findings preclude definitive conclusions regarding the impact that exposure to wind turbine noise (WTN) may have on QOL. In the current study (officially titled the Community Noise(More)