Learn More
In this paper, a fully automatic method for luminal contour segmentation in intracoronary ultrasound imaging is introduced. Its principle is based on a contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, which is generally Rayleigh distributed. The main interest of the technique is its fully(More)
BACKGROUND In vivo detection of vulnerable plaques is presently limited by a lack of diagnostic tools. Intravascular ultrasound elastography is a new technique based on intravascular ultrasound and has the potential to differentiate between different plaques phenotypes. However, the predictive value of intravascular elastography to detect vulnerable plaques(More)
BACKGROUND Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is expressed abundantly in the necrotic core of coronary lesions, and products of its enzymatic activity may contribute to inflammation and cell death, rendering plaque vulnerable to rupture. METHODS AND RESULTS This study compared the effects of 12 months of treatment with darapladib (an(More)
Intravascular ultrasound (IVUS) elastography visualizes local radial strain of arteries in so-called elastograms to detect rupture-prone plaques. However, due to the unknown arterial stress distribution these elastograms cannot be directly interpreted as a morphology and material composition image. To overcome this limitation we have developed a method that(More)
Once plaques intrude into the lumen, the shear stress they are exposed to alters with hitherto unknown consequences for plaque composition. We investigated the relationship between shear stress and strain, a marker for plaque composition, in human coronary arteries. We imaged 31 plaques in coronary arteries with angiography and intravascular ultrasound.(More)
The rupture of thin-cap fibroatheroma (TCFA) plaques is a major cause of acute coronary events. A TCFA has a trombogenic soft lipid core, shielded from the blood stream by a thin, possibly inflamed, stiff cap. The majority of atherosclerotic plaques resemble a TCFA in terms of overall structural composition, but have a more complex, heterogeneous(More)
The quantitative assessment of and compensation for catheter rotation in intravascular ultrasound images presents a fundamental problem for noninvasive characterization of the mechanical properties of the coronary arteries. A method based on the scale-space optical flow algorithm with a feature-based weighting scheme is proposed to account for the(More)
We describe a contactless optical technique selectively enhancing superficial blood vessels below variously pigmented intact human skin by combining images in different spectral bands. Two CMOS-cameras, with apochromatic lenses and dual-band LED-arrays, simultaneously streamed Left (L) and Right (R) image data to a dual-processor PC. Both cameras captured(More)
This study was performed to characterize coronary plaque types by optical coherence tomography (OCT) and intravascular ultrasound (IVUS) radiofrequency (RF) data analysis, and to investigate the possibility of error reduction by combining these techniques. Intracoronary imaging methods have greatly enhanced the diagnostic capabilities for the detection of(More)