Frits Mastik

Learn More
BACKGROUND Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is expressed abundantly in the necrotic core of coronary lesions, and products of its enzymatic activity may contribute to inflammation and cell death, rendering plaque vulnerable to rupture. METHODS AND RESULTS This study compared the effects of 12 months of treatment with darapladib (an(More)
In this paper, a fully automatic method for luminal contour segmentation in intracoronary ultrasound imaging is introduced. Its principle is based on a contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, which is generally Rayleigh distributed. The main interest of the technique is its fully(More)
The feasibility of assessing arterial wall configuration with an intravascular 40 MHz ultrasound imaging device was investigated in an in vitro study of 11 autopsy specimens of human arteries. The system consists of a single element transducer, rotated with a motor mounted on an 8F catheter tip. Cross sections obtained with ultrasound were matched with the(More)
BACKGROUND Rupture of thin-cap fibroatheromatous plaques is a major cause of acute myocardial infarction (AMI). Such plaques can be identified in vitro by 3D intravascular palpography with high sensitivity and specificity. We used this technique in patients undergoing percutaneous intervention to assess the incidence of mechanically deformable regions. We(More)
Beamforming of plane-wave ultrasound echo signals in the Fourier domain provides fast and accurate image reconstruction. Conventional implementations perform a k-space interpolation from the uniform sampled grid to a nonuniform acoustic dispersion grid. In this paper, we demonstrate that this step can be replaced by a nonuniform Fourier transform. We study(More)
Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram (i.e.,(More)
Rupture of vulnerable plaques in coronary arteries is the major cause of acute coronary syndromes. Most vulnerable plaques consist of a thin fibrous cap covering an atheromous core. These plaques can be identified using intravascular ultrasound (IVUS) palpography, which measures radial strain by cross-correlating RF signals at different intraluminal(More)
The rupture of thin-cap fibroatheroma (TCFA) plaques is a major cause of acute coronary events. A TCFA has a trombogenic soft lipid core, shielded from the blood stream by a thin, possibly inflamed, stiff cap. The majority of atherosclerotic plaques resemble a TCFA in terms of overall structural composition, but have a more complex, heterogeneous(More)
AIMS Plaque composition is a major determinant of coronary related clinical syndromes. In vitro experiments on human coronary and femoral arteries have demonstrated that different plaque types were detectable with intravascular ultrasound elastography. The aim of this study was to investigate the feasibility of applying intravascular elastography during(More)
Once plaques intrude into the lumen, the shear stress they are exposed to alters with hitherto unknown consequences for plaque composition. We investigated the relationship between shear stress and strain, a marker for plaque composition, in human coronary arteries. We imaged 31 plaques in coronary arteries with angiography and intravascular ultrasound.(More)