Frits A. de Wolf

Learn More
Microiontophoretic delivery of horseradish peroxidase in the torus semicircularis of the trout resulted in heavy labeling of somata in the rhombencephalic nucleus intermedius octavolateralis and nucleus octavus magnocellularis. In addition some labeled somata were found closely to the fasciculus longitudinalis lateralis and in the diencephalon. Efferents(More)
A custom-designed, highly hydrophilic gelatin was produced in Pichia pastoris. Secreted production levels in single-copy transformants were in the range 3-6 g/l of clarified broth and purification to near homogeneity could be accomplished by differential ammonium sulfate precipitation. Despite the fact that gelatins are highly susceptible to proteolysis(More)
Elastin-like polypeptides (ELPs) are biocompatible designer polypeptides with inverse temperature transition behavior in solution. They have a wide variety of possible applications and a potential medical importance. Currently, production of ELPs is done at lab scale in Escherichia coli shake flask cultures. With a view to future large scale production, we(More)
We study the self-assembly of genetically engineered protein-based triblock copolymers consisting of a central pH-responsive silk-like middle block (S(H)n, where S(H) is a silk-like octapeptide, (GA)3GH and n is the number of repeats) flanked by hydrophilic random coil outer blocks (C2). Our previous work has already shown that triblocks with very long(More)
An amphiphilic silk-like protein polymer was efficiently produced in the yeast Pichia pastoris. The secreted product was fully intact and was purified by solubilization in formic acid and subsequent precipitation of denatured host proteins upon dilution with water. In aqueous alkaline solution, the negatively charged acidic polymer assumed extended helical(More)
BACKGROUND Specific coupling of de novo designed recombinant protein polymers for the construction of precisely structured nanomaterials is of interest for applications in biomedicine, pharmaceutics and diagnostics. An attractive coupling strategy is to incorporate specifically interacting peptides into the genetic design of the protein polymers. An example(More)
Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking(More)
This study describes the design, production, and testing of functionalized variants of a recombinant protein-based polymer that forms nanofibrillar hydrogels with self-healing properties. With a view to bone tissue engineering applications, we equipped these variants with N-terminal extensions containing either (1) integrin-binding (RGD) or (2) less(More)
  • 1