Fritjof Helmchen

Learn More
Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed(More)
Glial cells have been identified as key signaling components in the brain; however, methods to investigate their structure and function in vivo have been lacking. Here, we describe a new, highly selective approach for labeling astrocytes in intact rodent neocortex that allows in vivo imaging using two-photon microscopy. The red fluorescent dye(More)
The effect of the fluorescent Ca2+ indicator dye Fura-2 on Ca2+ dynamics was studied in proximal apical dendrites of neocortical layer V and hippocampal CA1 pyramidal neurons in rat brain slices using somatic whole-cell recording and a charge-coupled device camera. A single action potential evoked a transient increase of intradendritic calcium concentration(More)
1. Simultaneous whole-cell recordings in a rat brain slice preparation are described from presynaptic terminals (calyces of Held) and postsynaptic somata which form an axosomatic synapse in the medial nucleus of the trapezoid body (MNTB). 2. Presynaptic action potentials evoked suprathreshold excitatory postsynaptic potentials (EPSPs). The minimum synaptic(More)
Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual(More)
Neural activity manifests itself as complex spatiotemporal activation patterns in cell populations. Even for local neural circuits, a comprehensive description of network activity has been impossible so far. Here we demonstrate that two-photon calcium imaging of bulk-labeled tissue permits dissection of local input and output activities in rat neocortex in(More)
Calcium dynamics associated with a single action potential were studied quantitatively in the calyx of Held, a large presynaptic terminal in the rat brainstem. Terminals were loaded with different concentrations of high- or low-affinity Ca2+ indicators via patch pipettes. Spatially averaged Ca2+ signals were measured fluorometrically and analyzed on the(More)
With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional-including confocal-fluorescence microscopy. Nonlinear optical microscopy, in particular two photon-excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply(More)
It is becoming increasingly clear that single cortical neurons encode complex and behaviorally relevant signals, but efficient means to study gene functions in small networks and single neurons in vivo are still lacking. Here, we establish a method for genetic manipulation and subsequent phenotypic analysis of individual cortical neurons in vivo. First,(More)
Two-photon calcium imaging of neuronal populations enables optical recording of spiking activity in living animals, but standard laser scanners are too slow to accurately determine spike times. Here we report in vivo imaging in mouse neocortex with greatly improved temporal resolution using random-access scanning with acousto-optic deflectors. We obtained(More)