Learn More
Gliding motility, ultrastructure and nutrition of two newly isolated filamentous sulfate-reducing bacteria, strains 5ac10 and 4be13, were investigated. The filaments were always attached to surfaces. Growth was supported by addition of insoluble aluminium phosphate or agar as substrata for gliding movement. Electron microscopy of ultrathin sections revealed(More)
A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments. Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles, radiotracer experiments and stable carbon isotope data. But the elusive microorganisms mediating this reaction have not yet been isolated, and(More)
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud(More)
A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval,(More)
Enrichment and pure cultures of nitrate-reducing bacteria were shown to grow anaerobically with ferrous iron as the only electron donor or as the additional electron donor in the presence of acetate. The newly observed bacterial process may significantly contribute to ferric iron formation in the suboxic zone of aquatic sediments.
Saturated and aromatic hydrocarbons are wide-spread in our environment. These compounds exhibit low chemical reactivity and for many decades were thought to undergo biodegradation only in the presence of free oxygen. During the past decade, however, an increasing number of microorganisms have been detected that degrade hydrocarbons under strictly anoxic(More)
A novel type of denitrifying bacterium (strain HxN1) with the capacity to oxidize n-alkanes anaerobically with nitrate as the electron acceptor to CO(2) formed (1-methylpentyl)succinate (MPS) during growth on n-hexane as the only organic substrate under strict exclusion of air. Identification of MPS by gas chromatography-mass spectrometry was based on(More)
Biological formation of methane is the terminal process of biomass degradation in aquatic habitats where oxygen, nitrate, ferric iron and sulphate have been depleted as electron acceptors. The pathway leading from dead biomass to methane through the metabolism of anaerobic bacteria and archaea is well understood for easily degradable biomolecules such as(More)
Many crude oil constituents are biodegradable in the presence of oxygen; however, a substantial anaerobic degradation has never been demonstrated. An unusually low content of n-alkanes in oils of certain deposits is commonly attributed to selective utilization of these hydrocarbons by aerobic microorganisms. On the other hand, oil wells and production(More)
Anaerobic oxidation of methane (AOM) and sulphate reduction were examined in sediment samples from a marine gas hydrate area (Hydrate Ridge, NE Pacific). The sediment contained high numbers of microbial consortia consisting of organisms that affiliate with methanogenic archaea and with sulphate-reducing bacteria. Sediment samples incubated under strictly(More)